Analytical investigation of nonlinear heave-coupled response of tension leg platform

Analytical investigation of nonlinear heave-coupled response of tension leg platform Having deep view in structural response of tension leg platform is important issue not only for response analysis but also for engineering design. Coupling between surge and heave motions of tension leg platform is such a problem. Here, tension leg platform motions are considered only in surge and heave degrees of freedom without pitch effect. The coupled term of heave is a nonlinear differential equation. Because the focus of this article is on this term, therefore, Duffing equation of motion in the surge direction is linearized. The wave forces are calculated using Airy’s wave theory and Morison’s equation, ignoring the diffraction effects. Current force also can be very important in dynamic analysis of tension leg platform. Because it affects the term of heave that is coupled with surge. It is shown that the effect of surge motion coupling on heave motion is very important in large displacement of surge motion in many sea states. The main result is that the coupling effects appeared in some frequencies such as heave and surge frequency, twice the frequency of wave, twice the natural surge frequency, and summation and difference of frequency of wave and surge frequency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment SAGE

Analytical investigation of nonlinear heave-coupled response of tension leg platform

Loading next page...
 
/lp/sage/analytical-investigation-of-nonlinear-heave-coupled-response-of-S1p0j4gs8c
Publisher
SAGE
Copyright
© IMechE 2018
ISSN
1475-0902
eISSN
2041-3084
D.O.I.
10.1177/1475090218776430
Publisher site
See Article on Publisher Site

Abstract

Having deep view in structural response of tension leg platform is important issue not only for response analysis but also for engineering design. Coupling between surge and heave motions of tension leg platform is such a problem. Here, tension leg platform motions are considered only in surge and heave degrees of freedom without pitch effect. The coupled term of heave is a nonlinear differential equation. Because the focus of this article is on this term, therefore, Duffing equation of motion in the surge direction is linearized. The wave forces are calculated using Airy’s wave theory and Morison’s equation, ignoring the diffraction effects. Current force also can be very important in dynamic analysis of tension leg platform. Because it affects the term of heave that is coupled with surge. It is shown that the effect of surge motion coupling on heave motion is very important in large displacement of surge motion in many sea states. The main result is that the coupling effects appeared in some frequencies such as heave and surge frequency, twice the frequency of wave, twice the natural surge frequency, and summation and difference of frequency of wave and surge frequency.

Journal

Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime EnvironmentSAGE

Published: Jun 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off