Access the full text.
Sign up today, get DeepDyve free for 14 days.
The chemical changes that occur to asphalt with oxidation include an increase in oxygen content, as well as the unsaturation of the molecules. This change raises the polarity and stiffness of the material. As a consequence, the elastic response increases, altering its rheology. These transformations are essential to determine pavement performance during its service life. However, the characterization of these chemical and rheological processes cannot be completed because of the inefficiency of current procedures that simulate asphalt oxidation. For this reason, the objective of this study is to characterize asphalt oxidation fundamentally and to relate the observed changes in the materials’ mechanical response. To achieve this goal, a representative group of asphalt samples has been exposed to environmental oxidation, and alternatively to thermal and ultraviolet aging in the laboratory. The samples were characterized chemically and rheologically before the start of the experiment. It was possible to find a correlation between the content of specific chemical species in the material and their mechanical behavior at low and intermediate temperatures. In addition, the present study helps to understand the oxidation phenomena, and helps verify the ineffectiveness of traditional aging techniques, so that they can be modified to simulate the environmental process better.
Transportation Research Record – SAGE
Published: Dec 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.