A statistical approach for three-dimensional tolerance redesign of mechanical assemblies

A statistical approach for three-dimensional tolerance redesign of mechanical assemblies The unified Jacobian–Torsor model has been developed for performing three-dimensional tolerance analysis in both deterministic and statistical situations. The aim of this paper is to develop a statistical approach for three-dimensional tolerance redesign of mechanical assemblies by integrating the unified Jacobian–Torsor model and Monte Carlo simulation to guide the designer to choose tolerances more economically. To implement the proposed approach, a unified Jacobian–Torsor model is created based on the assembly functional requirement and assigned initial tolerance values. The Monte Carlo simulation is employed to iteratively evaluate the model using sets of random numbers as inputs so as to make this deterministic model become a stochastic one. The simulation is stopped as the number of iterations increases to the pre-specified number of iterations, the statistical results of functional requirement are obtained as well as corresponding contribution percentage of each functional element to the total functional requirement is calculated. The results are verified by comparing the statistical results of functional requirement with the specified design specification, while the contribution percentage chart can help the designer determine which tolerance should tighten or loosen. After several iterations, once the statistical result of functional requirement is sufficiently close to the design specification, the final result of tolerance values can be obtained and three-dimensional tolerance redesign of mechanical assembly is achieved. A numerical example is given to demonstrate the application of the proposed method, and the comparison with the deterministic tolerance redesign method exhibits that the proposed method has better economic effect. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science SAGE

A statistical approach for three-dimensional tolerance redesign of mechanical assemblies

Loading next page...
 
/lp/sage/a-statistical-approach-for-three-dimensional-tolerance-redesign-of-KIZUJ0Da0M
Publisher
SAGE Publications
Copyright
© IMechE 2017
ISSN
0954-4062
eISSN
2041-2983
D.O.I.
10.1177/0954406217716956
Publisher site
See Article on Publisher Site

Abstract

The unified Jacobian–Torsor model has been developed for performing three-dimensional tolerance analysis in both deterministic and statistical situations. The aim of this paper is to develop a statistical approach for three-dimensional tolerance redesign of mechanical assemblies by integrating the unified Jacobian–Torsor model and Monte Carlo simulation to guide the designer to choose tolerances more economically. To implement the proposed approach, a unified Jacobian–Torsor model is created based on the assembly functional requirement and assigned initial tolerance values. The Monte Carlo simulation is employed to iteratively evaluate the model using sets of random numbers as inputs so as to make this deterministic model become a stochastic one. The simulation is stopped as the number of iterations increases to the pre-specified number of iterations, the statistical results of functional requirement are obtained as well as corresponding contribution percentage of each functional element to the total functional requirement is calculated. The results are verified by comparing the statistical results of functional requirement with the specified design specification, while the contribution percentage chart can help the designer determine which tolerance should tighten or loosen. After several iterations, once the statistical result of functional requirement is sufficiently close to the design specification, the final result of tolerance values can be obtained and three-dimensional tolerance redesign of mechanical assembly is achieved. A numerical example is given to demonstrate the application of the proposed method, and the comparison with the deterministic tolerance redesign method exhibits that the proposed method has better economic effect.

Journal

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering ScienceSAGE

Published: Jun 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off