Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Buettner (1987)
Spin trapping: ESR parameters of spin adducts.Free radical biology & medicine, 3 4
Abhik Ghosh (2017)
Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations.Chemical reviews, 117 4
(1924)
NBO, version 5.0, Theoretical Chemistry Institute
Benjamin Cooper, J. Napoline, Christine Thomas (2012)
Catalytic Applications of Early/Late Heterobimetallic ComplexesCatalysis Reviews, 54
T. Szymańska-Buzar (2005)
Structure and reactivity of tungsten(II) and molybdenum(II) compounds containing an MM′ bondCoordination Chemistry Reviews, 249
Aaas News, E. Lu, Min-Min Zhou, Rong Mocsai, A. Myers, E. Huang, B. Jackson, Davide Ferrari, V. Tybulewicz, V. Lowell, Clifford Lepore, J. Koretzky, Gary Kahn, M. L., F. Achard, H. Eva, Ernst-Detlef Schulze, J. Acharya, U. Acharya, U. Acharya, Shetal Patel, E. Koundakjian, K. Nagashima, Xianlin Han, J. Acharya, D. Adams, Jonathan Horton, Blood, M. Adams, M. McVey, J. Sekelsky, J. Adamson, G. Kochendoerfer, A. Adeleke, A. Kamdem-Toham, Alan Aderem, C. Picard, Aeschlimann, G. Haug, G. Agarwal, M. Scully, H. Aguilaniu, L. Gustafsson, M. Rigoulet, T. Nyström, Asymmetric Inheri, Ferhaan Ahmad, J. Schmitt, M. Aida, S. Ammal, J. Aizenberg, D. Muller, J. Grazul, D. Hamann, J. Ajioka, C. Su, A. Akella, M. Alam, F. Gao, A. Alatas, H. Sinn, Titus Albu, P. Zuev, M. Al-Dayeh, J. Dwyer, A. Al-ghonaium, Sami Al-Hajjar, S. Al-Jumaah, A. Allakhverdov, V. Pokrovsky, Allen, A. Brown, James Allen, A. Brown, James Gillooly, James (1893)
Book ReviewsBuffalo Medical and Surgical Journal, 33
Huilong Dong, Tingjun Hou, Yaguang Zhao, Xuefeng Fu, Youyong Li (2012)
DFT study of cobalt porphyrin complex for living radical polymerization of olefinsComputational and Theoretical Chemistry, 1001
Katsukiyo Miura, A. Hosomi (2008)
Development of New Synthetic Organic Reactions Using Stannyl Radicals as Key IntermediatesChemInform, 39
Neal Mankad (2014)
Non-Precious Metal Catalysts for C–H Borylation Enabled by Metal–Metal CooperativitySynlett, 25
( LideD. R., CRC Handbook of Chemistry and Physics, CRC press, Boca Raton, FL, 85th edn, 2005, section 9.)
LideD. R., CRC Handbook of Chemistry and Physics, CRC press, Boca Raton, FL, 85th edn, 2005, section 9.LideD. R., CRC Handbook of Chemistry and Physics, CRC press, Boca Raton, FL, 85th edn, 2005, section 9., LideD. R., CRC Handbook of Chemistry and Physics, CRC press, Boca Raton, FL, 85th edn, 2005, section 9.
( In corrole chemistry it is customary to denote the ligand π orbitals with the irreducible representations of the respective orbitals of porphyrin (D4h): GhoshA., Chem. Rev., 2017, 117 , 3798 , . In the present paper we give the symmetry representations assuming a symmetric domed corrole (Cs), followed by the approximate D4h representations in parentheses .28191934)
In corrole chemistry it is customary to denote the ligand π orbitals with the irreducible representations of the respective orbitals of porphyrin (D4h): GhoshA., Chem. Rev., 2017, 117 , 3798 , . In the present paper we give the symmetry representations assuming a symmetric domed corrole (Cs), followed by the approximate D4h representations in parentheses .28191934In corrole chemistry it is customary to denote the ligand π orbitals with the irreducible representations of the respective orbitals of porphyrin (D4h): GhoshA., Chem. Rev., 2017, 117 , 3798 , . In the present paper we give the symmetry representations assuming a symmetric domed corrole (Cs), followed by the approximate D4h representations in parentheses .28191934, In corrole chemistry it is customary to denote the ligand π orbitals with the irreducible representations of the respective orbitals of porphyrin (D4h): GhoshA., Chem. Rev., 2017, 117 , 3798 , . In the present paper we give the symmetry representations assuming a symmetric domed corrole (Cs), followed by the approximate D4h representations in parentheses .28191934
Debjit Das, S. Mohapatra, Sujit Roy (2015)
Recent advances in heterobimetallic catalysis across a "transition metal-tin" motif.Chemical Society reviews, 44 11
(1982)
Inorg
Lukas Kreis, S. Krautwald, Nicole Pfeiffer, Rainer Martin, E. Carreira (2013)
Photocatalytic synthesis of allylic trifluoromethyl substituted styrene derivatives in batch and flow.Organic letters, 15 7
I. Khudyakov (2013)
Transient free radicals in viscous solventsResearch on Chemical Intermediates, 39
(2012)
Wiley Interdiscip
F. Weinhold, C. Landis (2012)
Discovering Chemistry With Natural Bond Orbitals
Matthias Weiss, Lukas Kreis, Alex Lauber, E. Carreira (2011)
Cobalt-catalyzed coupling of alkyl iodides with alkenes: deprotonation of hydridocobalt enables turnover.Angewandte Chemie, 50 47
A. Gridnev, S. Ittel (2001)
Catalytic chain transfer in free-radical polymerizations.Chemical reviews, 101 12
Matthias Weiss, E. Carreira (2011)
Total synthesis of (+)-daphmanidin E.Angewandte Chemie, 50 48
25 For example, (TPFC)Sn-Cl displays a sharp Soret band at 416 nm and two Q band peaks at 566 and 588 nm
A. Stolzenberg, Sarah Workman, Jessica Gutshall, J. Petersen, N. Akhmedov (2007)
Syntheses and characterization of organo-group 14 cobaloxime compounds.Inorganic chemistry, 46 16
Yang Cao, J. Petersen, A. Stolzenberg (1998)
Metalloradical Chemistry of Cobalt(II) Porphyrins. The Syntheses, Structure, and Reactivity of Triphenyltin(II)- and Trihalomethylcobalt(III) OctaethylporphyrinInorganic Chemistry, 37
J. Schneider, J. Hagen, O. Heinemann, C. Krüger, F. Biani, P. Zanello (1998)
Synthesis, structure, spectroelectrochemical and theoretical investigations of Formation of a cobalt complexed stannacycle via a mixed alkyne-stannylene cycloaddition reactionInorganica Chimica Acta, 281
and P
F. Weinhold, C. Landis (2012)
Discovering Chemistry with Natural Bond Orbitals: Weinhold/Discovering Chemistry
J. Černák, I. Kočanová, M. Orendáč (2012)
Copper-Nickel Heterobimetallic CompoundsComments on Inorganic Chemistry, 33
M. Holt, W. Wilson, J. Nelson (1989)
Transition metal-tin chemistryChemical Reviews, 89
B. Oelkers, Mikhail Butovskii, R. Kempe (2012)
f-Element-metal bonding and the use of the bond polarity to build molecular intermetalloids.Chemistry, 18 43
P. Power (2003)
Persistent and stable radicals of the heavier main group elements and related species.Chemical reviews, 103 3
G. Schrauzer, G. Kratel (1969)
Organometallderivate des Bis(dimethylglyoximato)-kobaltsChemische Berichte, 102
Lin Yun, Hugo Vazquez-Lima, Huayi Fang, Zhengmin Yao, Georg Geisberger, C. Dietl, Abhik Ghosh, P. Brothers, Xuefeng Fu (2014)
Synthesis and reactivity studies of a tin(II) corrole complex.Inorganic chemistry, 53 13
S. Fukuzumi, K. Miyamoto, T. Suenobu, A. Caemelbecke, K. Kadish (1998)
Electron Transfer Mechanism of Organocobalt Porphyrins. Site of Electron Transfer, Migration of Organic Groups, and Cobalt−Carbon Bond Energies in Different Oxidation StatesJournal of the American Chemical Society, 120
M. Tada, K. Kaneko (1995)
TRIPHENYLTIN)COBALOXIME AS A REAGENT FOR RADICAL GENERATION FROM BROMIDESJournal of Organic Chemistry, 60
Gregory Imler, Michael Zdilla, B. Wayland (2013)
Evaluation of the Rh(II)-Rh(II) bond dissociation enthalpy for [(TMTAA)Rh]2 by 1H NMR T2 measurements: application in determining the Rh-C(O)- BDE in [(TMTAA)Rh]2C═O.Inorganic chemistry, 52 19
Huayi Fang, Huize Jing, Aixi Zhang, Haonan Ge, Zhengmin Yao, P. Brothers, Xuefeng Fu (2016)
Synthesis, Electronic Structure, and Reactivity Studies of a 4-Coordinate Square Planar Germanium(IV) Cation.Journal of the American Chemical Society, 138 24
L. Simkhovich, A. Mahammed, I. Goldberg, Z. Gross (2001)
Synthesis and characterization of germanium, tin, phosphorus, iron, and rhodium complexes of tris(pentafluorophenyl)corrole, and the utilization of the iron and rhodium corroles as cyclopropanation catalysts.Chemistry, 7 5
R. Singh, C. Sinha (1984)
Viscosities and activation energies of viscous flow of the binary mixtures of n-hexane with toluene, chlorobenzene, and 1-hexanolJournal of Chemical & Engineering Data, 29
M. Kendrick, Walid Al-Akhdar (1987)
Preparation and Characterization of (Alkylperoxo)cobalt(III) Porphyrins: First Direct Evidence for Metal-Carbon Bond Homolysis in Dioxygen Insertion Reactions.ChemInform, 19
(2005)
Lide, CRC Handbook of Chemistry and Physics, CRC press
D. Kelly, M. Picton (2000)
Catalytic tin radical mediated tricyclisations. Part 1. Monocyclisation studiesJournal of The Chemical Society-perkin Transactions 1
E. Butcher, C. Rhodes, Mark Standing, R. Davidson, R. Bowser (1992)
Structures and fragmentations of organosilicon and organotin radical cationsJournal of The Chemical Society-perkin Transactions 1
Yaguang Zhao, Huilong Dong, Youyong Li, Xuefeng Fu (2012)
Living radical polymerization of acrylates and acrylamides mediated by a versatile cobalt porphyrin complex.Chemical communications, 48 29
F. Santos, C. Castro, J. Dymond, N. Dalaouti, Marc Assael, A. Nagashima (2006)
Standard Reference Data for the Viscosity of TolueneJournal of Physical and Chemical Reference Data, 35
(2017)
Bery’s Molecular orbital Visualizer (BMV), http://old.chem.pku.edu.cn/fuxf/index.php/Pub/BMV (accessed 2017.07.21)
D. Patmore, W. Graham (1967)
Organometallic compounds with metal-metal bonds. VII. Preparation and a study of the infrared spectra of mono-and bis(tetracarbonylcobalt) derivatives of germanium and tinInorganic Chemistry, 6
Huayi Fang, Huize Jing, Haonan Ge, P. Brothers, Xuefeng Fu, Shengfa Ye (2015)
The Mechanism of E-H (E = N, O) Bond Activation by a Germanium Corrole Complex: A Combined Experimental and Computational Study.Journal of the American Chemical Society, 137 22
A. Hasegawa, S. Kaminaka, T. Wakabayashi, M. Hayashi, M. Symons, J. Rideout (1984)
Electron spin resonance studies of a range of stannane radical cationsJournal of The Chemical Society-dalton Transactions
J. Schneider, J. Hagen, D. Bläser, R. Boese, C. Krüger (1997)
The Reactivity of the Unbridged CoSn Bond in [(η5‐C5H5)(η2‐C2H4)CoSn{CH[Si(CH3)3]2}2]—The First Organometallic Complexes with direct CoSnChalcogen Bonding (Chalcogen = Se, Te)Angewandte Chemie, 36
A. Gridnev (2000)
The 25th anniversary of catalytic chain transferJournal of Polymer Science Part A, 38
D. Agustin, M. Ehses (2009)
119Sn NMR spectroscopic and structural properties of transition metal complexes with terminal stannylene ligandsComptes Rendus Chimie, 12
( WeinholdF. and LandisC. R., Discovering chemistry with natural bond orbitals, John Wiley & Sons, Hoboken, NJ, 1st edn, 2012, ch. 4.)
WeinholdF. and LandisC. R., Discovering chemistry with natural bond orbitals, John Wiley & Sons, Hoboken, NJ, 1st edn, 2012, ch. 4.WeinholdF. and LandisC. R., Discovering chemistry with natural bond orbitals, John Wiley & Sons, Hoboken, NJ, 1st edn, 2012, ch. 4., WeinholdF. and LandisC. R., Discovering chemistry with natural bond orbitals, John Wiley & Sons, Hoboken, NJ, 1st edn, 2012, ch. 4.
M. Liao, S. Scheiner (2002)
Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, ZnJournal of Chemical Physics, 117
Chi‐How Peng, Tsung-Yao Yang, Yaguang Zhao, Xuefeng Fu (2014)
Reversible deactivation radical polymerization mediated by cobalt complexes: recent progress and perspectives.Organic & biomolecular chemistry, 12 43
Huayi Fang, Zhenbao Ling, K. Lang, B. Bruin, Xuefeng Fu (2014)
Germanium(III) corrole complex: reactivity and mechanistic studies of visible-light promoted N–H bond activationsChemical Science, 5
T. Lockhart (1985)
Steric effects in neophyltin(IV) chemistryJournal of Organometallic Chemistry, 287
A heterobimetallic complex, (TPFC)Sn–Co(TAP) (TPFC = 5,10,15-tris(pentafluorophenyl)corrole, TAP = 5,10,15,20-tetrakis(p-methoxyphenyl)porphyrin), was synthesized. The complex featured a Sn–Co bond with a bond dissociation enthalpy (BDE) of 30.2 ± 0.9 kcal mol−1 and a bond dissociation Gibbs free energy (BDFE) of 21.0 ± 0.2 kcal mol−1, which underwent homolysis to produce the (TPFC)Sn radical and (TAP)CoII under either heat or visible light irradiation. The novel tin radical (TPFC)Sn, being the first four-coordinate tin radical observed at room temperature, was studied spectroscopically and computationally. (TPFC)Sn–Co(TAP) promoted the oligomerization of aryl alkynes to give the insertion products (TPFC)Sn–(CHC(Ar))n–Co(TAP) (n = 1, 2, or 3) as well as 1,3,5-triarylbenzenes. Mechanistic studies revealed a radical chain mechanism involving the (TPFC)Sn radical as the key intermediate.
Chemical Science – Royal Society of Chemistry
Published: Jun 6, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.