The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fenitrogencarbon (FeNC) materialsElectronic supplementary information (ESI) available: Additional information on the secondary nitrogen precursors used as well as addition al XPS and EXAFS data is included. See DOI: 10.1039/c8sc00491a

The chemical identity, state and structure of catalytically active centers during the... We report novel structureactivity relationships and explore the chemical state and structure of catalytically active sites under operando conditions during the electrochemical CO2 reduction reaction (CO2RR) catalyzed by a series of porous ironnitrogencarbon (FeNC) catalysts. The FeNC catalysts were synthesized from different nitrogen precursors and, as a result of this, exhibited quite distinct physical properties, such as BET surface areas and distinct chemical N-functionalities in varying ratios. The chemical diversity of the FeNC catalysts was harnessed to set up correlations between the catalytic CO2RR activity and their chemical nitrogen-functionalities, which provided a deeper understanding between catalyst chemistry and function. XPS measurements revealed a dominant role of porphyrin-like FeNx motifs and pyridinic nitrogen species in catalyzing the overall reaction process. Operando EXAFS measurements revealed an unexpected change in the Fe oxidation state and associated coordination from Fe2+ to Fe1+. This redox change coincides with the onset of catalytic CH4 production around 0.9 VRHE. The ability of the solid state coordinative Fe1+Nx moiety to form hydrocarbons from CO2 is remarkable, as it represents the solid-state analogue to molecular Fe1+ coordination compounds with the same catalytic capability under homogeneous catalytic environments. This finding highlights a conceptual bridge between heterogeneous and homogenous catalysis and contributes significantly to our fundamental understanding of the FeNC catalyst function in the CO2RR. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemical Science Royal Society of Chemistry

The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fenitrogencarbon (FeNC) materialsElectronic supplementary information (ESI) available: Additional information on the secondary nitrogen precursors used as well as addition al XPS and EXAFS data is included. See DOI: 10.1039/c8sc00491a

Loading next page...
 
/lp/rsc/the-chemical-identity-state-and-structure-of-catalytically-active-LADcfHEjWB
Publisher
Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2041-6520
D.O.I.
10.1039/c8sc00491a
Publisher site
See Article on Publisher Site

Abstract

We report novel structureactivity relationships and explore the chemical state and structure of catalytically active sites under operando conditions during the electrochemical CO2 reduction reaction (CO2RR) catalyzed by a series of porous ironnitrogencarbon (FeNC) catalysts. The FeNC catalysts were synthesized from different nitrogen precursors and, as a result of this, exhibited quite distinct physical properties, such as BET surface areas and distinct chemical N-functionalities in varying ratios. The chemical diversity of the FeNC catalysts was harnessed to set up correlations between the catalytic CO2RR activity and their chemical nitrogen-functionalities, which provided a deeper understanding between catalyst chemistry and function. XPS measurements revealed a dominant role of porphyrin-like FeNx motifs and pyridinic nitrogen species in catalyzing the overall reaction process. Operando EXAFS measurements revealed an unexpected change in the Fe oxidation state and associated coordination from Fe2+ to Fe1+. This redox change coincides with the onset of catalytic CH4 production around 0.9 VRHE. The ability of the solid state coordinative Fe1+Nx moiety to form hydrocarbons from CO2 is remarkable, as it represents the solid-state analogue to molecular Fe1+ coordination compounds with the same catalytic capability under homogeneous catalytic environments. This finding highlights a conceptual bridge between heterogeneous and homogenous catalysis and contributes significantly to our fundamental understanding of the FeNC catalyst function in the CO2RR.

Journal

Chemical ScienceRoyal Society of Chemistry

Published: May 18, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off