Synthesis of nano-sized LTL zeolite by addition of a Ba precursor with superior n-octane aromatization performanceElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cy00661j

Synthesis of nano-sized LTL zeolite by addition of a Ba precursor with superior n-octane... A nano-sized LTL-type zeolite was successfully synthesized using a facile and commercially viable hydrothermal method by the addition of a small amount of Ba precursor to the conventional synthesis mixture regardless of the types of Ba precursors used. The results showed that the Ba added can be used to finely tune LTL particle sizes in the range of 0.11 m and shorten the synthesis time, indicating that Ba had a significant effect on the crystallization process of LTL-type zeolite. By comprehensively tracing the evolution of two systems, namely KL and BaKL, it was found that the crystallization of KL zeolite took place by a chain of processes including the appearance of worm-like particles (WLPs), their random aggregation/coalescence and crystallization of these aggregates. On the other hand, the Ba added can accelerate the coordination between monosilicate and alumina species. Therefore, LTL zeolites with small crystal sizes were quickly produced by rapid crystallization of the amorphous phase to the final products. The Pt/LTL catalysts were obtained by impregnating the obtained zeolites with Pt and then evaluated in n-octane aromatization reactions. Compared with conventional LTL zeolite, the nano-sized LTL zeolite-supported Pt catalyst exhibited superior catalytic performance with an about 3-fold prolonged catalytic lifetime and higher selectivity for aromatics due to the shorter diffusion path of the primary aromatic products in nano-sized zeolites, which inhibited the secondary undesirable reactions (coke formation and hydrogenolysis). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Catalysis Science & Technology Royal Society of Chemistry

Synthesis of nano-sized LTL zeolite by addition of a Ba precursor with superior n-octane aromatization performanceElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cy00661j

Loading next page...
 
/lp/rsc/synthesis-of-nano-sized-ltl-zeolite-by-addition-of-a-ba-precursor-with-CU7vgQAV0J
Publisher
Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2044-4753
eISSN
2044-4761
D.O.I.
10.1039/c8cy00661j
Publisher site
See Article on Publisher Site

Abstract

A nano-sized LTL-type zeolite was successfully synthesized using a facile and commercially viable hydrothermal method by the addition of a small amount of Ba precursor to the conventional synthesis mixture regardless of the types of Ba precursors used. The results showed that the Ba added can be used to finely tune LTL particle sizes in the range of 0.11 m and shorten the synthesis time, indicating that Ba had a significant effect on the crystallization process of LTL-type zeolite. By comprehensively tracing the evolution of two systems, namely KL and BaKL, it was found that the crystallization of KL zeolite took place by a chain of processes including the appearance of worm-like particles (WLPs), their random aggregation/coalescence and crystallization of these aggregates. On the other hand, the Ba added can accelerate the coordination between monosilicate and alumina species. Therefore, LTL zeolites with small crystal sizes were quickly produced by rapid crystallization of the amorphous phase to the final products. The Pt/LTL catalysts were obtained by impregnating the obtained zeolites with Pt and then evaluated in n-octane aromatization reactions. Compared with conventional LTL zeolite, the nano-sized LTL zeolite-supported Pt catalyst exhibited superior catalytic performance with an about 3-fold prolonged catalytic lifetime and higher selectivity for aromatics due to the shorter diffusion path of the primary aromatic products in nano-sized zeolites, which inhibited the secondary undesirable reactions (coke formation and hydrogenolysis).

Journal

Catalysis Science & TechnologyRoyal Society of Chemistry

Published: May 16, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off