Silica-based micro- and mesoporous catalysts for dry reforming of methaneElectronic supplementary information (ESI) available: Tables summarizing the catalytic performance of silica-based micro- and mesoporous catalysts for DRM. See DOI: 10.1039/c8cy00622a

Silica-based micro- and mesoporous catalysts for dry reforming of methaneElectronic supplementary... The increasing environmental concern on global warming has triggered intensive research on sustainable utilization of greenhouse gases. CO2 (dry) reforming of methane (DRM) is one of the most effective means since it can transform two major greenhouse gases, CO2 and CH4, together into the more valuable synthesis gas. Silica-based micro- and mesoporous materials turned out to be one promising class of catalysts due to their wide availability, high thermal stability and high specific surface area. In this article, we have overviewed the background and key problems lying in DRM as well as the strength and weakness of silica-based materials used for DRM. Recent developments on these silica-based micro- and mesoporous catalysts including Ni-based catalysts, bimetallic catalysts, perovskite catalysts, Ni-based catalysts doped with promoters and coreshell catalysts for DRM have then been presented by summarizing the synthesis methods and reasons leading to the high catalytic performance and carbon resistance. Finally, key challenges and possible strategies to improve these silica-based catalysts for DRM have been discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Catalysis Science & Technology Royal Society of Chemistry

Silica-based micro- and mesoporous catalysts for dry reforming of methaneElectronic supplementary information (ESI) available: Tables summarizing the catalytic performance of silica-based micro- and mesoporous catalysts for DRM. See DOI: 10.1039/c8cy00622a

Loading next page...
 
/lp/rsc/silica-based-micro-and-mesoporous-catalysts-for-dry-reforming-of-0gjJW2sSMY
Publisher
Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2044-4753
eISSN
2044-4761
D.O.I.
10.1039/c8cy00622a
Publisher site
See Article on Publisher Site

Abstract

The increasing environmental concern on global warming has triggered intensive research on sustainable utilization of greenhouse gases. CO2 (dry) reforming of methane (DRM) is one of the most effective means since it can transform two major greenhouse gases, CO2 and CH4, together into the more valuable synthesis gas. Silica-based micro- and mesoporous materials turned out to be one promising class of catalysts due to their wide availability, high thermal stability and high specific surface area. In this article, we have overviewed the background and key problems lying in DRM as well as the strength and weakness of silica-based materials used for DRM. Recent developments on these silica-based micro- and mesoporous catalysts including Ni-based catalysts, bimetallic catalysts, perovskite catalysts, Ni-based catalysts doped with promoters and coreshell catalysts for DRM have then been presented by summarizing the synthesis methods and reasons leading to the high catalytic performance and carbon resistance. Finally, key challenges and possible strategies to improve these silica-based catalysts for DRM have been discussed.

Journal

Catalysis Science & TechnologyRoyal Society of Chemistry

Published: May 22, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off