Access the full text.
Sign up today, get DeepDyve free for 14 days.
With the growing demand for green chemistry, mesoporous solid strong bases have attracted increasing attention in view of their tremendous potential as eco-friendly catalysts in diverse reactions. In the present study, K-incorporated mesoporous carbon is successfully prepared through high-temperature chemical activation combined with the hard-templating method. The combined method is proved to be very effective at promoting the formation of stable K species that strongly interact with the carbon support. The obtained solid bases thus have both high activity and enhanced water-resistant stability, which is reflected in their catalysis of the transesterification of ethylene carbonate with methanol to dimethyl carbonate. A much higher turnover frequency (TOF) value (430.4 h1) and better reusability are thus observed, compared with a series of typical and popular solid bases, such as MgO (TOF, 1.0 h1) and CaO/SBA-15 (TOF, 6.4 h1).
Catalysis Science & Technology – Royal Society of Chemistry
Published: Apr 4, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.