Access the full text.
Sign up today, get DeepDyve free for 14 days.
The synthesis of novel nitrogen-doped zinc tungstate (N-doped ZnWO4) perforated nanostructures and their photocatalytic activity for hydrogen production from water and rhodamine B degradation under direct sunlight have been demonstrated for the first time. ZnWO4 was synthesized by a simple hydrothermal method and doped with nitrogen by precise thermal treatment in the presence of thiourea to obtain perforated nanorods. The structural analysis carried out by X-ray diffractometry (XRD) and first principles density functional theory (DFT) based calculations shows a monoclinic structure. The microstructural and morphological studies show unique perforated nanorods with diameters of 2520 nm of N-doped ZnWO4. The substitution of nitrogen in place of oxygen atoms was confirmed by X-ray photoelectron spectroscopy (XPS). The effective substitution of nitrogen in ZnWO4 extends the absorption bands into the visible region. Hence, a computational study of N-doped ZnWO4 was also performed for the investigation and confirmation of its crystal and electronic structures. UV-DRS and analysis of the density of states (DOS) indicate a band gap of 2.4 experimentally and 2.9 eV theoretically. Considering the band structure, its functionality as a sunlight driven photocatalyst for water splitting and dye degradation has been investigated. N-Doped ZnWO4 exhibits enhanced photocatalytic activity towards hydrogen evolution (5862.1 mol h1 g1) for water splitting as well as RhB degradation under natural sunlight. The enhanced photocatalytic activity of N-doped ZnWO4 is attributed to extended absorbance in the visible region, which in turn generates more electronhole pairs responsible for higher H2 generation. DFT calculations suggest that the hybridization between O-2p and N-2p at the valence band edge is the reason for the narrowing band gap, and the degree of hybridization is likely to be increased with an increase in N doping which is responsible for the higher activity. The present investigation demonstrates a novel approach for the synthesis of perforated N-doped ZnWO4 with great prospects of scaling up and high yields.
Catalysis Science & Technology – Royal Society of Chemistry
Published: May 22, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.