Perforated N-doped monoclinic ZnWO4 nanorods for efficient photocatalytic hydrogen generation and RhB degradation under natural sunlightElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cy00521d

Perforated N-doped monoclinic ZnWO4 nanorods for efficient photocatalytic hydrogen generation and... The synthesis of novel nitrogen-doped zinc tungstate (N-doped ZnWO4) perforated nanostructures and their photocatalytic activity for hydrogen production from water and rhodamine B degradation under direct sunlight have been demonstrated for the first time. ZnWO4 was synthesized by a simple hydrothermal method and doped with nitrogen by precise thermal treatment in the presence of thiourea to obtain perforated nanorods. The structural analysis carried out by X-ray diffractometry (XRD) and first principles density functional theory (DFT) based calculations shows a monoclinic structure. The microstructural and morphological studies show unique perforated nanorods with diameters of 2520 nm of N-doped ZnWO4. The substitution of nitrogen in place of oxygen atoms was confirmed by X-ray photoelectron spectroscopy (XPS). The effective substitution of nitrogen in ZnWO4 extends the absorption bands into the visible region. Hence, a computational study of N-doped ZnWO4 was also performed for the investigation and confirmation of its crystal and electronic structures. UV-DRS and analysis of the density of states (DOS) indicate a band gap of 2.4 experimentally and 2.9 eV theoretically. Considering the band structure, its functionality as a sunlight driven photocatalyst for water splitting and dye degradation has been investigated. N-Doped ZnWO4 exhibits enhanced photocatalytic activity towards hydrogen evolution (5862.1 mol h1 g1) for water splitting as well as RhB degradation under natural sunlight. The enhanced photocatalytic activity of N-doped ZnWO4 is attributed to extended absorbance in the visible region, which in turn generates more electronhole pairs responsible for higher H2 generation. DFT calculations suggest that the hybridization between O-2p and N-2p at the valence band edge is the reason for the narrowing band gap, and the degree of hybridization is likely to be increased with an increase in N doping which is responsible for the higher activity. The present investigation demonstrates a novel approach for the synthesis of perforated N-doped ZnWO4 with great prospects of scaling up and high yields. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Catalysis Science & Technology Royal Society of Chemistry

Perforated N-doped monoclinic ZnWO4 nanorods for efficient photocatalytic hydrogen generation and RhB degradation under natural sunlightElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cy00521d

Loading next page...
 
/lp/rsc/perforated-n-doped-monoclinic-znwo4-nanorods-for-efficient-WkAMGJQ2Gx
Publisher
The Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2044-4753
eISSN
2044-4761
D.O.I.
10.1039/c8cy00521d
Publisher site
See Article on Publisher Site

Abstract

The synthesis of novel nitrogen-doped zinc tungstate (N-doped ZnWO4) perforated nanostructures and their photocatalytic activity for hydrogen production from water and rhodamine B degradation under direct sunlight have been demonstrated for the first time. ZnWO4 was synthesized by a simple hydrothermal method and doped with nitrogen by precise thermal treatment in the presence of thiourea to obtain perforated nanorods. The structural analysis carried out by X-ray diffractometry (XRD) and first principles density functional theory (DFT) based calculations shows a monoclinic structure. The microstructural and morphological studies show unique perforated nanorods with diameters of 2520 nm of N-doped ZnWO4. The substitution of nitrogen in place of oxygen atoms was confirmed by X-ray photoelectron spectroscopy (XPS). The effective substitution of nitrogen in ZnWO4 extends the absorption bands into the visible region. Hence, a computational study of N-doped ZnWO4 was also performed for the investigation and confirmation of its crystal and electronic structures. UV-DRS and analysis of the density of states (DOS) indicate a band gap of 2.4 experimentally and 2.9 eV theoretically. Considering the band structure, its functionality as a sunlight driven photocatalyst for water splitting and dye degradation has been investigated. N-Doped ZnWO4 exhibits enhanced photocatalytic activity towards hydrogen evolution (5862.1 mol h1 g1) for water splitting as well as RhB degradation under natural sunlight. The enhanced photocatalytic activity of N-doped ZnWO4 is attributed to extended absorbance in the visible region, which in turn generates more electronhole pairs responsible for higher H2 generation. DFT calculations suggest that the hybridization between O-2p and N-2p at the valence band edge is the reason for the narrowing band gap, and the degree of hybridization is likely to be increased with an increase in N doping which is responsible for the higher activity. The present investigation demonstrates a novel approach for the synthesis of perforated N-doped ZnWO4 with great prospects of scaling up and high yields.

Journal

Catalysis Science & TechnologyRoyal Society of Chemistry

Published: May 22, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off