PbTe quantum dots as electron transfer intermediates for the enhanced hydrogen evolution reaction of amorphous MoSx/TiO2 nanotube arraysElectronic supplementary information (ESI) available: Supplementary figures. See DOI: 10.1039/c8nr02532k

PbTe quantum dots as electron transfer intermediates for the enhanced hydrogen evolution reaction... Amorphous molybdenum sulfides (a-MoSx) have been demonstrated as economic and efficient hydrogen evolution catalysts for water splitting. Further improvements of their hydrogen evolution reaction (HER) activities could be achieved by coupling them with appropriate electron transfer intermediates via interfacial engineering. In this study, a novel ternary composite electrode comprising PbTe quantum dots (QDs), a-MoSx and TiO2 nanotube arrays (TNAs) was successfully fabricated by a facile combination of successive ionic layer adsorption and reaction (SILAR) and electrodeposition routes. Investigation of the microstructures and electrocatalytic properties of the a-MoSx/PbTe QD/TNA hybrid material show that PbTe QDs can work as electron temporary storage and electron transfer intermediates between the electrocatalyst a-MoSx and electrode-based material TiO2 that significantly lower the impedance of electrode process, enhance the energy band bending at the interface between the electrolyte and electrode surface, and increase the electrochemically active surface area. The electron interphase crossing from a-MoSx to electrolyte and electron transport inside the electrode are greatly strengthened. The ternary PbTe@MoSx/TNA electrode demonstrates lowered onset potential and Tafel slope and superior electrocatalytic activity and cyclic stability towards HER. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanoscale Royal Society of Chemistry

PbTe quantum dots as electron transfer intermediates for the enhanced hydrogen evolution reaction of amorphous MoSx/TiO2 nanotube arraysElectronic supplementary information (ESI) available: Supplementary figures. See DOI: 10.1039/c8nr02532k

Loading next page...
 
/lp/rsc/pbte-quantum-dots-as-electron-transfer-intermediates-for-the-enhanced-AQipigVqkk
Publisher
Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2040-3364
D.O.I.
10.1039/c8nr02532k
Publisher site
See Article on Publisher Site

Abstract

Amorphous molybdenum sulfides (a-MoSx) have been demonstrated as economic and efficient hydrogen evolution catalysts for water splitting. Further improvements of their hydrogen evolution reaction (HER) activities could be achieved by coupling them with appropriate electron transfer intermediates via interfacial engineering. In this study, a novel ternary composite electrode comprising PbTe quantum dots (QDs), a-MoSx and TiO2 nanotube arrays (TNAs) was successfully fabricated by a facile combination of successive ionic layer adsorption and reaction (SILAR) and electrodeposition routes. Investigation of the microstructures and electrocatalytic properties of the a-MoSx/PbTe QD/TNA hybrid material show that PbTe QDs can work as electron temporary storage and electron transfer intermediates between the electrocatalyst a-MoSx and electrode-based material TiO2 that significantly lower the impedance of electrode process, enhance the energy band bending at the interface between the electrolyte and electrode surface, and increase the electrochemically active surface area. The electron interphase crossing from a-MoSx to electrolyte and electron transport inside the electrode are greatly strengthened. The ternary PbTe@MoSx/TNA electrode demonstrates lowered onset potential and Tafel slope and superior electrocatalytic activity and cyclic stability towards HER.

Journal

NanoscaleRoyal Society of Chemistry

Published: May 23, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off