Monodisperse and brightly luminescent CsPbBr3/Cs4PbBr6 perovskite composite nanocrystalsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8nr01266k

Monodisperse and brightly luminescent CsPbBr3/Cs4PbBr6 perovskite composite... The microscale composite structure strategy of embedding CsPbBr3 nanocrystals (NCs) in the microscale Cs4PbBr6 matrix (CPB113/CPB416) has successfully demonstrated its ability to resolve the fluorescence quenching of perovskite NCs in the solid agglomeration state due to the loss of quantum confinement. Unfortunately, the controllable synthesis of monodisperse nanoscale composites with bright emission in the solid state remains a great challenge. Here, we present for the first time a novel supersaturated recrystallization process to controllably synthesize monodisperse CPB113/CPB416 composite NCs with bright emission in the solid form, where CsPbBr3 NCs were uniformly embedded in the nano hexagonal Cs4PbBr6 matrix. The existence of 2-methylimidazole (MeIm) not only can control the composition rate of CsPbBr3 to Cs4PbBr6, the size and dispersity of CsPbBr3 in the composite NCs but can also help controllably obtain the monodisperse and hexagonal Cs4PbBr6 matrix. The as-prepared composite structure can effectively prevent CsPbBr3 fluorescence quenching and make the composite NCs have a high photoluminescence quantum yield (PLQY) of 83%. In addition, we obtained tunable blue to red emitting composite NCs by varying the halide salts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanoscale Royal Society of Chemistry

Monodisperse and brightly luminescent CsPbBr3/Cs4PbBr6 perovskite composite nanocrystalsElectronic supplementary information (ESI) available. See DOI: 10.1039/c8nr01266k

Loading next page...
 
/lp/rsc/monodisperse-and-brightly-luminescent-cspbbr3-cs4pbbr6-perovskite-mf3rNr0jad
Publisher
The Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2040-3364
D.O.I.
10.1039/c8nr01266k
Publisher site
See Article on Publisher Site

Abstract

The microscale composite structure strategy of embedding CsPbBr3 nanocrystals (NCs) in the microscale Cs4PbBr6 matrix (CPB113/CPB416) has successfully demonstrated its ability to resolve the fluorescence quenching of perovskite NCs in the solid agglomeration state due to the loss of quantum confinement. Unfortunately, the controllable synthesis of monodisperse nanoscale composites with bright emission in the solid state remains a great challenge. Here, we present for the first time a novel supersaturated recrystallization process to controllably synthesize monodisperse CPB113/CPB416 composite NCs with bright emission in the solid form, where CsPbBr3 NCs were uniformly embedded in the nano hexagonal Cs4PbBr6 matrix. The existence of 2-methylimidazole (MeIm) not only can control the composition rate of CsPbBr3 to Cs4PbBr6, the size and dispersity of CsPbBr3 in the composite NCs but can also help controllably obtain the monodisperse and hexagonal Cs4PbBr6 matrix. The as-prepared composite structure can effectively prevent CsPbBr3 fluorescence quenching and make the composite NCs have a high photoluminescence quantum yield (PLQY) of 83%. In addition, we obtained tunable blue to red emitting composite NCs by varying the halide salts.

Journal

NanoscaleRoyal Society of Chemistry

Published: May 22, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off