Mechanistic insights into 4-nitrophenol degradation and benzyl alcohol oxidation pathways over MgO/g-C3N4 model catalyst systemsElectronic supplementary information (ESI) available: TGA, BET, FT-IR, XPS, PL and photocatalytic degradation of MB. See DOI: 10.1039/c8cy00431e

Mechanistic insights into 4-nitrophenol degradation and benzyl alcohol oxidation pathways over... A series of g-C3N4-based visible light active photocatalysts was prepared by using melamine as a precursor and MgO as a dopant. The composites exhibited excellent photocatalytic activity in the degradation of 4-nitrophenol and selective oxidation of benzyl alcohol in aqueous media under a low-power visible LED light source. The composites oxidized benzyl alcohols to benzaldehydes with better selectivity and conversion efficiency in mild acidic conditions (pH 56) than in neutral conditions. When compared to pure g-C3N4, the as-synthesized MgO/g-C3N4 composites showed about five-fold enhancement in photocatalytic activity. EPR spectroscopy results revealed identical EPR signals from both g-C3N4 and MgO/g-C3N4 composites, thus confirming the presence of unpaired electrons with C2p character. Introduction of MgO into g-C3N4 resulted in an increased number of electrons trapped in the C2p states of g-C3N4, which manifested as an enhancement in the EPR signal intensity. The difference in the light and dark EPR spectral signal intensities verified the efficient charge separation in the as-synthesized MgO/g-C3N4 catalysts. Moreover, the double integral values of the visible and dark EPR spectral signal difference intensities matched well with the 4-nitrophenol degradation rate constants. This further confirms the importance of trapped electrons in C2p states responsible for the observed higher photocatalytic activities. Radical scavenging experiments evidenced electrons as the dominant active species responsible for 4-nitrophenol degradation, whereas both electrons and holes were observed to participate in the selective oxidation of benzyl alcohol. Furthermore, the scavenging experiments ruled out the possibility of either hydroxyl or singlet oxygen radicals influencing the rate of oxidation. This study demonstrates MgO/g-C3N4 as a viable photoactive material for applications related to environmental pollution abatement. The photoactive nature of the catalysts in aqueous media under a low-power visible LED light source further signifies their economic and ecological aspects, which can be exploited for other applications as well. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Catalysis Science & Technology Royal Society of Chemistry

Mechanistic insights into 4-nitrophenol degradation and benzyl alcohol oxidation pathways over MgO/g-C3N4 model catalyst systemsElectronic supplementary information (ESI) available: TGA, BET, FT-IR, XPS, PL and photocatalytic degradation of MB. See DOI: 10.1039/c8cy00431e

Loading next page...
 
/lp/rsc/mechanistic-insights-into-4-nitrophenol-degradation-and-benzyl-alcohol-a5uGxzGh3K
Publisher
The Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2044-4753
eISSN
2044-4761
D.O.I.
10.1039/c8cy00431e
Publisher site
See Article on Publisher Site

Abstract

A series of g-C3N4-based visible light active photocatalysts was prepared by using melamine as a precursor and MgO as a dopant. The composites exhibited excellent photocatalytic activity in the degradation of 4-nitrophenol and selective oxidation of benzyl alcohol in aqueous media under a low-power visible LED light source. The composites oxidized benzyl alcohols to benzaldehydes with better selectivity and conversion efficiency in mild acidic conditions (pH 56) than in neutral conditions. When compared to pure g-C3N4, the as-synthesized MgO/g-C3N4 composites showed about five-fold enhancement in photocatalytic activity. EPR spectroscopy results revealed identical EPR signals from both g-C3N4 and MgO/g-C3N4 composites, thus confirming the presence of unpaired electrons with C2p character. Introduction of MgO into g-C3N4 resulted in an increased number of electrons trapped in the C2p states of g-C3N4, which manifested as an enhancement in the EPR signal intensity. The difference in the light and dark EPR spectral signal intensities verified the efficient charge separation in the as-synthesized MgO/g-C3N4 catalysts. Moreover, the double integral values of the visible and dark EPR spectral signal difference intensities matched well with the 4-nitrophenol degradation rate constants. This further confirms the importance of trapped electrons in C2p states responsible for the observed higher photocatalytic activities. Radical scavenging experiments evidenced electrons as the dominant active species responsible for 4-nitrophenol degradation, whereas both electrons and holes were observed to participate in the selective oxidation of benzyl alcohol. Furthermore, the scavenging experiments ruled out the possibility of either hydroxyl or singlet oxygen radicals influencing the rate of oxidation. This study demonstrates MgO/g-C3N4 as a viable photoactive material for applications related to environmental pollution abatement. The photoactive nature of the catalysts in aqueous media under a low-power visible LED light source further signifies their economic and ecological aspects, which can be exploited for other applications as well.

Journal

Catalysis Science & TechnologyRoyal Society of Chemistry

Published: May 11, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off