Hydrogen-bonding-assisted charge transfer: significantly enhanced photocatalytic H2 evolution over g-C3N4 anchored with ferrocene-based hole relayElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cy00488a

Hydrogen-bonding-assisted charge transfer: significantly enhanced photocatalytic H2 evolution... Herein, a polymeric graphitic carbon nitride (for simplicity, g-C3N4) photocatalyst has been identified as a promising material for hydrogen production from water due to its comparatively low cost and facile modification of its electronic structure. However, to date, how to speed up the transfer rate of photogenerated charges, especially hole transfer rate, still remains a formidable challenge. Herein, a novel system of g-C3N4/1,1-ferrocenedicarboxylic acid (FcDA) composites was developed for efficient visible light-driven H2 evolution, in which the redox mediator FcDA served as hole-transport molecules and platinum (Pt) acted as an electron sink. The FcDA molecules are anchored onto g-C3N4 by hydrogen-bonding interactions between the carboxylic groups and amino groups as well as interactions between aromatic FcDA and graphitic C3N4. The matched energy-levels between g-C3N4 and FcDA facilitate photogenerated hole transfer from the g-C3N4 valence band to FcDA that results in the formation of FcDA+ radicals, and thus, photoinduced electrons and holes are efficiently separated. Due to the additional charge separation pathway, enhanced hole transfer kinetics, and the extremely rapid intermolecular radical reactions, charge recombination is effectively suppressed; therefore, more electrons can be released for hydrogen production. Under optimal experimental conditions, the developed g-C3N4/FcDA composite with 4 wt% FcDA exhibits high water splitting activity with a H2 evolution rate of up to 77.91 mol h1, which is nearly 6 times that of bare g-C3N4 (13.18 mol h1). Moreover, the obtained g-C3N4/FcDA photocatalyst displays excellent stability, and there is no obvious decrease in the H2-production rate after five test cycles. Thus, we anticipate that our simple modification strategy will offer an avenue to merge the polymeric g-C3N4 photocatalyst with surface organometallic chemistry for high-efficiency solar-to-fuel conversion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Catalysis Science & Technology Royal Society of Chemistry

Hydrogen-bonding-assisted charge transfer: significantly enhanced photocatalytic H2 evolution over g-C3N4 anchored with ferrocene-based hole relayElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cy00488a

Loading next page...
 
/lp/rsc/hydrogen-bonding-assisted-charge-transfer-significantly-enhanced-o7KJ0FsIyt
Publisher
Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2044-4753
eISSN
2044-4761
D.O.I.
10.1039/c8cy00488a
Publisher site
See Article on Publisher Site

Abstract

Herein, a polymeric graphitic carbon nitride (for simplicity, g-C3N4) photocatalyst has been identified as a promising material for hydrogen production from water due to its comparatively low cost and facile modification of its electronic structure. However, to date, how to speed up the transfer rate of photogenerated charges, especially hole transfer rate, still remains a formidable challenge. Herein, a novel system of g-C3N4/1,1-ferrocenedicarboxylic acid (FcDA) composites was developed for efficient visible light-driven H2 evolution, in which the redox mediator FcDA served as hole-transport molecules and platinum (Pt) acted as an electron sink. The FcDA molecules are anchored onto g-C3N4 by hydrogen-bonding interactions between the carboxylic groups and amino groups as well as interactions between aromatic FcDA and graphitic C3N4. The matched energy-levels between g-C3N4 and FcDA facilitate photogenerated hole transfer from the g-C3N4 valence band to FcDA that results in the formation of FcDA+ radicals, and thus, photoinduced electrons and holes are efficiently separated. Due to the additional charge separation pathway, enhanced hole transfer kinetics, and the extremely rapid intermolecular radical reactions, charge recombination is effectively suppressed; therefore, more electrons can be released for hydrogen production. Under optimal experimental conditions, the developed g-C3N4/FcDA composite with 4 wt% FcDA exhibits high water splitting activity with a H2 evolution rate of up to 77.91 mol h1, which is nearly 6 times that of bare g-C3N4 (13.18 mol h1). Moreover, the obtained g-C3N4/FcDA photocatalyst displays excellent stability, and there is no obvious decrease in the H2-production rate after five test cycles. Thus, we anticipate that our simple modification strategy will offer an avenue to merge the polymeric g-C3N4 photocatalyst with surface organometallic chemistry for high-efficiency solar-to-fuel conversion.

Journal

Catalysis Science & TechnologyRoyal Society of Chemistry

Published: May 16, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off