Graphite felts modified by vertical two-dimensional WO3 nanowall arrays: high-performance electrode materials for cerium-based redox flow batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8nr01345d

Graphite felts modified by vertical two-dimensional WO3 nanowall arrays: high-performance... Cerium-based redox flow batteries (RFBs) are very attractive for highly efficient energy storage applications with industrial-scale storage capacity. However, the development of active, stable, and earth-abundant catalysts for cerium redox reactions with sluggish kinetics remains a major challenge. Herein, for the first time, two-dimensional (2D) nanostructured architectures were used to design and fabricate efficient and stable electrocatalysts from earth-abundant components toward the Ce(iv)/Ce(iii) redox reaction. A novel WO3/GF hybrid architecture (WGF) built from WO3 nanowall arrays (NWAs) anchored on graphite felt (GF) surfaces was prepared for cerium-based RFBs. This unique hybrid exhibits superior electrocatalytic performance since the vertical nanowall arrays display open and ordered structures that ensure full exposure of the active sites toward electrolytes, which allows direct and full contact of every nanowall with the electrolyte. As an electrode for cerium redox reactions, this WGF electrode exhibits a 42.1% and 32.0% increase in energy efficiency as compared with that of pristine GF and acid-treated GF at a high charge/discharge rate of 30 mA cm2. Moreover, the long-term cycling performance confirms the superior durability of the as-prepared WGF. This study suggests that the use of 2D nanostructures combined with vertical array microstructures is a promising strategy for efficient electrocatalysts toward cerium redox reactions with scale-up potential. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanoscale Royal Society of Chemistry

Graphite felts modified by vertical two-dimensional WO3 nanowall arrays: high-performance electrode materials for cerium-based redox flow batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8nr01345d

Loading next page...
 
/lp/rsc/graphite-felts-modified-by-vertical-two-dimensional-wo3-nanowall-KrAU62yi10
Publisher
The Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2040-3364
D.O.I.
10.1039/c8nr01345d
Publisher site
See Article on Publisher Site

Abstract

Cerium-based redox flow batteries (RFBs) are very attractive for highly efficient energy storage applications with industrial-scale storage capacity. However, the development of active, stable, and earth-abundant catalysts for cerium redox reactions with sluggish kinetics remains a major challenge. Herein, for the first time, two-dimensional (2D) nanostructured architectures were used to design and fabricate efficient and stable electrocatalysts from earth-abundant components toward the Ce(iv)/Ce(iii) redox reaction. A novel WO3/GF hybrid architecture (WGF) built from WO3 nanowall arrays (NWAs) anchored on graphite felt (GF) surfaces was prepared for cerium-based RFBs. This unique hybrid exhibits superior electrocatalytic performance since the vertical nanowall arrays display open and ordered structures that ensure full exposure of the active sites toward electrolytes, which allows direct and full contact of every nanowall with the electrolyte. As an electrode for cerium redox reactions, this WGF electrode exhibits a 42.1% and 32.0% increase in energy efficiency as compared with that of pristine GF and acid-treated GF at a high charge/discharge rate of 30 mA cm2. Moreover, the long-term cycling performance confirms the superior durability of the as-prepared WGF. This study suggests that the use of 2D nanostructures combined with vertical array microstructures is a promising strategy for efficient electrocatalysts toward cerium redox reactions with scale-up potential.

Journal

NanoscaleRoyal Society of Chemistry

Published: May 30, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off