Exceptionally stable Rh-based molecular catalyst heterogenized on a cationically charged covalent triazine framework support for efficient methanol carbonylationElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cy00294k

Exceptionally stable Rh-based molecular catalyst heterogenized on a cationically charged covalent... Direct carbonylation of methanol into methyl acetate and acetic acid using Rh-based heterogeneous catalysts is of great interest due to their effective levels of activity and stability. Here, a Rh-based molecular catalyst heterogenized on a charged 1,3-bis(pyridyl)imidazolium-based covalent triazine framework (Rh-bpim-CTF) was synthesized and characterized to have a single-site distribution of metal molecular species throughout the support by its ligation to abundant N atom sites. Methanol carbonylation was performed using the Rh-bpim-CTF catalyst in a plug-flow reaction in the gas phase, affording a turnover frequency of up to 3693 h1 and a productivity of 218.9 mol kg1 h1 for acetyl products with high stability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Catalysis Science & Technology Royal Society of Chemistry

Exceptionally stable Rh-based molecular catalyst heterogenized on a cationically charged covalent triazine framework support for efficient methanol carbonylationElectronic supplementary information (ESI) available. See DOI: 10.1039/c8cy00294k

Loading next page...
 
/lp/rsc/exceptionally-stable-rh-based-molecular-catalyst-heterogenized-on-a-cUDfN8Ppat
Publisher
Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2044-4753
eISSN
2044-4761
D.O.I.
10.1039/c8cy00294k
Publisher site
See Article on Publisher Site

Abstract

Direct carbonylation of methanol into methyl acetate and acetic acid using Rh-based heterogeneous catalysts is of great interest due to their effective levels of activity and stability. Here, a Rh-based molecular catalyst heterogenized on a charged 1,3-bis(pyridyl)imidazolium-based covalent triazine framework (Rh-bpim-CTF) was synthesized and characterized to have a single-site distribution of metal molecular species throughout the support by its ligation to abundant N atom sites. Methanol carbonylation was performed using the Rh-bpim-CTF catalyst in a plug-flow reaction in the gas phase, affording a turnover frequency of up to 3693 h1 and a productivity of 218.9 mol kg1 h1 for acetyl products with high stability.

Journal

Catalysis Science & TechnologyRoyal Society of Chemistry

Published: May 17, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off