Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decompositionElectronic supplementary information (ESI) available. See DOI: 10.1039/c8nr02441c

Electronic structure manipulation of graphene dots for effective hydrogen evolution from... This paper presents a heteroatom doping strategy to manipulate the structure of graphene-based photocatalysts for effective hydrogen production from aqueous solution. Oxygenation of graphene creates a bandgap to produce semiconducting graphene oxide, nitrogen doping extends the resonant -conjugation to prolong the charge lifetime, and sulfur doping breaks the electron neutrality to facilitate charge transfer. Accordingly, ammonia-treated sulfurnitrogen-co-doped graphene oxide dots (A-SNGODs) are synthesized by annealing graphene oxide sheets in sulfur-ammonia, oxidizing the sheets into dots, and then hydrothermally treating the dots in ammonia. The A-SNGODs exhibit a high nitrogen content in terms of quaternary and amide groups that are formed through sulfur-mediated reactions. The peripheral amide facilitates orbital conjugations to enhance the photocatalytic activity, whereas the quaternary nitrogen patches vacancy defects to improve stability. The simultaneous presence of electron-withdrawing S and electron-donating N atoms in the A-SNGODs facilitates charge separation and results in reactive electrons. When suspended in an aqueous triethanolamine solution, Pt-deposited A-SNGODs demonstrate a hydrogen-evolution quantum yield of 29% under monochromatic 420 nm irradiation. The A-SNGODs exhibit little activity decay under 6-day visible-light irradiation. This study demonstrates the excellence of the heteroatom-doping strategy in producing stable and active graphene-based materials for photoenergy conversion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanoscale Royal Society of Chemistry

Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decompositionElectronic supplementary information (ESI) available. See DOI: 10.1039/c8nr02441c

Loading next page...
 
/lp/rsc/electronic-structure-manipulation-of-graphene-dots-for-effective-Cpfdifcivy
Publisher
Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2040-3364
D.O.I.
10.1039/c8nr02441c
Publisher site
See Article on Publisher Site

Abstract

This paper presents a heteroatom doping strategy to manipulate the structure of graphene-based photocatalysts for effective hydrogen production from aqueous solution. Oxygenation of graphene creates a bandgap to produce semiconducting graphene oxide, nitrogen doping extends the resonant -conjugation to prolong the charge lifetime, and sulfur doping breaks the electron neutrality to facilitate charge transfer. Accordingly, ammonia-treated sulfurnitrogen-co-doped graphene oxide dots (A-SNGODs) are synthesized by annealing graphene oxide sheets in sulfur-ammonia, oxidizing the sheets into dots, and then hydrothermally treating the dots in ammonia. The A-SNGODs exhibit a high nitrogen content in terms of quaternary and amide groups that are formed through sulfur-mediated reactions. The peripheral amide facilitates orbital conjugations to enhance the photocatalytic activity, whereas the quaternary nitrogen patches vacancy defects to improve stability. The simultaneous presence of electron-withdrawing S and electron-donating N atoms in the A-SNGODs facilitates charge separation and results in reactive electrons. When suspended in an aqueous triethanolamine solution, Pt-deposited A-SNGODs demonstrate a hydrogen-evolution quantum yield of 29% under monochromatic 420 nm irradiation. The A-SNGODs exhibit little activity decay under 6-day visible-light irradiation. This study demonstrates the excellence of the heteroatom-doping strategy in producing stable and active graphene-based materials for photoenergy conversion.

Journal

NanoscaleRoyal Society of Chemistry

Published: May 30, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off