Determination of the limits of detection for aluminum-based alloys by spatially resolved single- and double-pulse laser-induced breakdown spectroscopy

Determination of the limits of detection for aluminum-based alloys by spatially resolved single-... A comparative study of laser-induced breakdown spectroscopy (LIBS) with spatially resolved single- and double-pulse configurations is performed to investigate the capability of simultaneous multi-element detection in aluminum-based alloys. The spatially resolved technique is used to obtain the LIBS spectra at 6 different positions along the plume expansion (axial) direction. The experimental parameters, including delay time, inter-pulse delay time and gate width, are optimized to achieve sensitive elemental detection. Under these optimized conditions, the limits of detection for Fe, Cu, Mg, Mn, Zn, Sn, Pb, Ni, Ti, Cr, Sr and Ca are obtained with the single- and double-pulse configurations. It is observed that an improvement of the detection capability is achieved in the spatially resolved double-pulse experiments. Moreover, the dependence of the limits of detection on the selection of atomic and ionic lines is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analytical Methods Royal Society of Chemistry

Determination of the limits of detection for aluminum-based alloys by spatially resolved single- and double-pulse laser-induced breakdown spectroscopy

Loading next page...
 
/lp/rsc/determination-of-the-limits-of-detection-for-aluminum-based-alloys-by-9QFc0VLd1s
Publisher
Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
1759-9660
eISSN
1759-9679
D.O.I.
10.1039/c8ay00596f
Publisher site
See Article on Publisher Site

Abstract

A comparative study of laser-induced breakdown spectroscopy (LIBS) with spatially resolved single- and double-pulse configurations is performed to investigate the capability of simultaneous multi-element detection in aluminum-based alloys. The spatially resolved technique is used to obtain the LIBS spectra at 6 different positions along the plume expansion (axial) direction. The experimental parameters, including delay time, inter-pulse delay time and gate width, are optimized to achieve sensitive elemental detection. Under these optimized conditions, the limits of detection for Fe, Cu, Mg, Mn, Zn, Sn, Pb, Ni, Ti, Cr, Sr and Ca are obtained with the single- and double-pulse configurations. It is observed that an improvement of the detection capability is achieved in the spatially resolved double-pulse experiments. Moreover, the dependence of the limits of detection on the selection of atomic and ionic lines is discussed.

Journal

Analytical MethodsRoyal Society of Chemistry

Published: May 23, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off