Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor miceElectronic supplementary information (ESI) available: All additional experimental data. See DOI: 10.1039/c8nr01063c

Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats... Ultrasmall clearable nanoparticles possess enormous potential as cancer imaging agents. In particular, biocompatible silicon nanoparticles (Si NPs) and carbon quantum dots (CQDs) hold great potential in this regard. Their facile surface functionalization easily allows the introduction of different labels for in vivo imaging. However, to date, a thorough biodistribution study by in vivo positron emission tomography (PET) and a comparative study of Si vs. C particles of similar size are missing. In this contribution, ultrasmall (size <5 nm) Si NPs and CQDs were synthesized and characterized by high-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared (FTIR), absorption and steady-state emission spectroscopy. Subsequent functionalization of NPs with a near-infrared dye (Kodak-XS-670) or a radiolabel (64Cu) enabled a detailed in vitro and in vivo study of the particles. For radiolabeling experiments, the bifunctional chelating agent S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) was conjugated to the amino surface groups of the respective NPs. Efficient radiolabeling of NOTA-functionalized NPs with the positron emitter 64Cu was found. The biodistribution and PET studies showed a rapid renal clearance from the in vivo systems for both variants of the nanoparticles. Interestingly, the different derivatives investigated exhibited significant differences in the biodistribution and pharmacokinetic properties. This can mostly be attributed to different surface charge and hydrophilicity of the NPs, arising from the synthetic strategy used to prepare the particles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanoscale Royal Society of Chemistry

Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor miceElectronic supplementary information (ESI) available: All additional experimental data. See DOI: 10.1039/c8nr01063c

Loading next page...
 
/lp/rsc/biodistribution-studies-of-ultrasmall-silicon-nanoparticles-and-carbon-AFrNi8Ajrp
Publisher
Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2040-3364
D.O.I.
10.1039/c8nr01063c
Publisher site
See Article on Publisher Site

Abstract

Ultrasmall clearable nanoparticles possess enormous potential as cancer imaging agents. In particular, biocompatible silicon nanoparticles (Si NPs) and carbon quantum dots (CQDs) hold great potential in this regard. Their facile surface functionalization easily allows the introduction of different labels for in vivo imaging. However, to date, a thorough biodistribution study by in vivo positron emission tomography (PET) and a comparative study of Si vs. C particles of similar size are missing. In this contribution, ultrasmall (size <5 nm) Si NPs and CQDs were synthesized and characterized by high-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared (FTIR), absorption and steady-state emission spectroscopy. Subsequent functionalization of NPs with a near-infrared dye (Kodak-XS-670) or a radiolabel (64Cu) enabled a detailed in vitro and in vivo study of the particles. For radiolabeling experiments, the bifunctional chelating agent S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) was conjugated to the amino surface groups of the respective NPs. Efficient radiolabeling of NOTA-functionalized NPs with the positron emitter 64Cu was found. The biodistribution and PET studies showed a rapid renal clearance from the in vivo systems for both variants of the nanoparticles. Interestingly, the different derivatives investigated exhibited significant differences in the biodistribution and pharmacokinetic properties. This can mostly be attributed to different surface charge and hydrophilicity of the NPs, arising from the synthetic strategy used to prepare the particles.

Journal

NanoscaleRoyal Society of Chemistry

Published: Apr 16, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off