A size-shrinkable nanoparticle-based combined anti-tumor and anti-inflammatory strategy for enhanced cancer therapyElectronic supplementary information (ESI) available. See DOI: 10.1039/c8nr01184b

A size-shrinkable nanoparticle-based combined anti-tumor and anti-inflammatory strategy for... Cancer-related inflammation can promote tumorigenesis, tumor growth and tumor metastasis in many types of cancers. Therefore, inhibiting cancer-related inflammation significantly improves cancer therapy. It has been reported that metformin (MET) inhibits the nuclear translocation of nuclear factor-B (NF-B), a key factor in cancer-related inflammation. However, the short half-life and the lack of tumor targeting limit the anti-inflammatory efficacy of MET in vivo. Herein, using pH-sensitive imine bonds, MET and the chemotherapy drug doxorubicin (DOX) were loaded onto size-shrinkable RGD-DGL-GNP nanoparticles (RDG NPs) for combination therapy. The RGD-MET-DGL-GNP nanoparticles (RMDG NPs) penetrated deep into the tumor to deliver MET and inhibit the NF-B activity in tumor cells, which further decreased tumor necrosis factor- (TNF-) and interleukin-6 (IL-6) expressions in tumor tissues and suppressed tumor cell proliferation. As a result, the co-administration of RGD-DOX-DGL-GNP (RDDG NPs) and RMDG NPs induced an improved therapeutic effect in a xenograft tumor model and a lipopolysaccharide (LPS)-induced pulmonary metastasis model with murine 4T1 breast cancer and CT26 colon cancer cells. Combining RDDG and RMDG NPs to simultaneously target tumors and cancer-related inflammation is a very effective anti-cancer strategy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanoscale Royal Society of Chemistry

A size-shrinkable nanoparticle-based combined anti-tumor and anti-inflammatory strategy for enhanced cancer therapyElectronic supplementary information (ESI) available. See DOI: 10.1039/c8nr01184b

Loading next page...
 
/lp/rsc/a-size-shrinkable-nanoparticle-based-combined-anti-tumor-and-anti-vt0ljh0U17
Publisher
The Royal Society of Chemistry
Copyright
This journal is © The Royal Society of Chemistry
ISSN
2040-3364
D.O.I.
10.1039/c8nr01184b
Publisher site
See Article on Publisher Site

Abstract

Cancer-related inflammation can promote tumorigenesis, tumor growth and tumor metastasis in many types of cancers. Therefore, inhibiting cancer-related inflammation significantly improves cancer therapy. It has been reported that metformin (MET) inhibits the nuclear translocation of nuclear factor-B (NF-B), a key factor in cancer-related inflammation. However, the short half-life and the lack of tumor targeting limit the anti-inflammatory efficacy of MET in vivo. Herein, using pH-sensitive imine bonds, MET and the chemotherapy drug doxorubicin (DOX) were loaded onto size-shrinkable RGD-DGL-GNP nanoparticles (RDG NPs) for combination therapy. The RGD-MET-DGL-GNP nanoparticles (RMDG NPs) penetrated deep into the tumor to deliver MET and inhibit the NF-B activity in tumor cells, which further decreased tumor necrosis factor- (TNF-) and interleukin-6 (IL-6) expressions in tumor tissues and suppressed tumor cell proliferation. As a result, the co-administration of RGD-DOX-DGL-GNP (RDDG NPs) and RMDG NPs induced an improved therapeutic effect in a xenograft tumor model and a lipopolysaccharide (LPS)-induced pulmonary metastasis model with murine 4T1 breast cancer and CT26 colon cancer cells. Combining RDDG and RMDG NPs to simultaneously target tumors and cancer-related inflammation is a very effective anti-cancer strategy.

Journal

NanoscaleRoyal Society of Chemistry

Published: May 17, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off