The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry.

The differential degradation of two cytosolic proteins as a tool to monitor autophagy in... The major pathway for cytosolic constituents to enter lysosomes is by autophagy. We used two cytosolic proteins, CuZn superoxide dismutase (SOD) and carbonic anhydrase III (CAIII), as autophagic markers in male rat hepatocytes. We took advantage of the differential presence of the two proteins in autophagic vacuoles because of the high resistance of SOD to lysosomal degradation as compared with CAIII. This allows us to determine the sequence of autophagic vacuole formation. We have double immunogold-labeled SOD and CAIII in cryosections of fasted rat liver and calculated the ratios of SOD over CAIII labeling densities (SOD/CAIII) in autophagic vacuoles (AV), as compared with the cytoplasm. Different classes of AV were defined according to their SOD/CAIII, their morphology, and their additional immunolabeling for the lysosomal markers lgp120 and cathepsin D. Of all AV, 15% exhibited a cytosol-like SOD/CAIII, indicating that degradation had not yet begun. Most of these initial AV (AVi) showed two enveloping membranes. The formation of AVi was prevented by 3-methyladenine, a potent inhibitor of autophagy. Of all AV, 85% showed a SOD/CAIII that exceeded the cytosolic ratio. These single membrane-bound vacuoles were called degradative AV (AVd). Labeling for lysosomal markers allowed the characterization of AV that shared features with both AVi and AVd. These AVi/d had a cytosol-like SOD/CAIII and a double membrane, but showed some labeling for lysosomal markers. Probably these AVi/d represent the recipient compartment for lysosomal components. AVd were positive for cathepsin D and lgp120. We discerned two AVd subclasses. Early AVd with cytosol-like SOD labeling density while CAIII labeling density was consistently lower than in the cytosol. Their size was similar to AVi and AVi/d. Late AVd contained higher SOD concentrations and were mostly larger. Our findings suggest that AV acquire lysosomal constituents by fusion with small nonautophagic structures and that after subsequent elimination of the inner membrane of AVi, degradation starts resulting in the formation of early AVd and late AVd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry.

Loading next page...
 
/lp/rockefeller-university-press/the-differential-degradation-of-two-cytosolic-proteins-as-a-tool-to-ow7ct0d3tt
Publisher
Rockefeller University Press
Copyright
© 1993 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
D.O.I.
10.1083/jcb.120.4.897
Publisher site
See Article on Publisher Site

Abstract

The major pathway for cytosolic constituents to enter lysosomes is by autophagy. We used two cytosolic proteins, CuZn superoxide dismutase (SOD) and carbonic anhydrase III (CAIII), as autophagic markers in male rat hepatocytes. We took advantage of the differential presence of the two proteins in autophagic vacuoles because of the high resistance of SOD to lysosomal degradation as compared with CAIII. This allows us to determine the sequence of autophagic vacuole formation. We have double immunogold-labeled SOD and CAIII in cryosections of fasted rat liver and calculated the ratios of SOD over CAIII labeling densities (SOD/CAIII) in autophagic vacuoles (AV), as compared with the cytoplasm. Different classes of AV were defined according to their SOD/CAIII, their morphology, and their additional immunolabeling for the lysosomal markers lgp120 and cathepsin D. Of all AV, 15% exhibited a cytosol-like SOD/CAIII, indicating that degradation had not yet begun. Most of these initial AV (AVi) showed two enveloping membranes. The formation of AVi was prevented by 3-methyladenine, a potent inhibitor of autophagy. Of all AV, 85% showed a SOD/CAIII that exceeded the cytosolic ratio. These single membrane-bound vacuoles were called degradative AV (AVd). Labeling for lysosomal markers allowed the characterization of AV that shared features with both AVi and AVd. These AVi/d had a cytosol-like SOD/CAIII and a double membrane, but showed some labeling for lysosomal markers. Probably these AVi/d represent the recipient compartment for lysosomal components. AVd were positive for cathepsin D and lgp120. We discerned two AVd subclasses. Early AVd with cytosol-like SOD labeling density while CAIII labeling density was consistently lower than in the cytosol. Their size was similar to AVi and AVi/d. Late AVd contained higher SOD concentrations and were mostly larger. Our findings suggest that AV acquire lysosomal constituents by fusion with small nonautophagic structures and that after subsequent elimination of the inner membrane of AVi, degradation starts resulting in the formation of early AVd and late AVd.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Feb 15, 1993

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off