The B cell-specific transcription factor BSAP regulates B cell proliferation.

The B cell-specific transcription factor BSAP regulates B cell proliferation. The B cell-specific activator protein (BSAP) is a DNA-binding transcription factor expressed in pro-B, pre-B, and mature B cells, but not in plasma cells. In this study, we explored the role of BSAP in B cell function by assessing how the content of this protein varies in cells driven by proliferative stimuli and, conversely, how artificial manipulation of BSAP activity affects cell proliferation. We found that BSAP activity of nuclear extracts increased when B cells were activated by mitogen (lipopolysaccharide LPS), antigen receptor-mediated signaling (surface immunoglobulin D IgD cross-linking) or T cell-dependent stimulation (CD40 cross-linking). We could suppress BSAP activity by exposure of B cells to phosphorothioate oligonucleotides antisense to the BSAP translation initiation start site, whereas control oligonucleotides were virtually inactive. Antisense-induced BSAP suppression was associated with a striking reduction in LPS-induced proliferation of splenic B cells and in the spontaneous proliferation of B lymphoma cells (CH12.LX), but the antisense oligonucleotide had virtually no effect on proliferation of two cell lines lacking BSAP: the T lymphoma line EL-4 and the plasma cell line MOPC-315. Overexpression of BSAP in splenic B cells or de novo expression in MOPC-315 plasma cells induced by transfection of a BSAP expression plasmid stimulated cell proliferation. Taken together, these results suggest that BSAP activity is a rate-limiting regulator of B cell proliferation. We also found that treatment with the antisense BSAP oligonucleotide downregulated Ig class switching induced by interleukin 4 plus LPS. This effect may be secondary to reduced proliferation or could be mediated through BSAP binding sites in the IgH locus. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Experimental Medicine Rockefeller University Press

The B cell-specific transcription factor BSAP regulates B cell proliferation.

Loading next page...
 
/lp/rockefeller-university-press/the-b-cell-specific-transcription-factor-bsap-regulates-b-cell-ZD6TXJqtCo
Publisher
Rockefeller University Press
Copyright
© 1994 Rockefeller University Press
ISSN
0022-1007
eISSN
1540-9538
DOI
10.1084/jem.179.4.1099
Publisher site
See Article on Publisher Site

Abstract

The B cell-specific activator protein (BSAP) is a DNA-binding transcription factor expressed in pro-B, pre-B, and mature B cells, but not in plasma cells. In this study, we explored the role of BSAP in B cell function by assessing how the content of this protein varies in cells driven by proliferative stimuli and, conversely, how artificial manipulation of BSAP activity affects cell proliferation. We found that BSAP activity of nuclear extracts increased when B cells were activated by mitogen (lipopolysaccharide LPS), antigen receptor-mediated signaling (surface immunoglobulin D IgD cross-linking) or T cell-dependent stimulation (CD40 cross-linking). We could suppress BSAP activity by exposure of B cells to phosphorothioate oligonucleotides antisense to the BSAP translation initiation start site, whereas control oligonucleotides were virtually inactive. Antisense-induced BSAP suppression was associated with a striking reduction in LPS-induced proliferation of splenic B cells and in the spontaneous proliferation of B lymphoma cells (CH12.LX), but the antisense oligonucleotide had virtually no effect on proliferation of two cell lines lacking BSAP: the T lymphoma line EL-4 and the plasma cell line MOPC-315. Overexpression of BSAP in splenic B cells or de novo expression in MOPC-315 plasma cells induced by transfection of a BSAP expression plasmid stimulated cell proliferation. Taken together, these results suggest that BSAP activity is a rate-limiting regulator of B cell proliferation. We also found that treatment with the antisense BSAP oligonucleotide downregulated Ig class switching induced by interleukin 4 plus LPS. This effect may be secondary to reduced proliferation or could be mediated through BSAP binding sites in the IgH locus.

Journal

The Journal of Experimental MedicineRockefeller University Press

Published: Apr 1, 1994

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off