Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase.

Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. We have developed a nuclear transformation system for Chlamydomonas reinhardtii, using micro-projectile bombardment to introduce the gene encoding nitrate reductase into a nit1 mutant strain which lacks nitrate reductase activity. By using either supercoiled or linear plasmid DNA, transformants were recovered consistently at a low efficiency, on the order of 15 transformants per microgram of plasmid DNA. In all cases the transforming DNA was integrated into the nuclear genome, usually in multiple copies. Most of the introduced copies were genetically linked to each other, and they were unlinked to the original nit1 locus. The transforming DNA and nit+ phenotype were stable through mitosis and meiosis, even in the absence of selection. nit1 transcripts of various sizes were expressed at levels equal to or greater than those in wild-type nit+ strains. In most transformants, nitrate reductase enzyme activity was expressed at approximately wild-type levels. In all transformants, nit1 mRNA and nitrate reductase enzyme activity were repressed in cells grown on ammonium medium, showing that expression of the integrated nit1 genes was regulated normally. When a second plasmid with a nonselectable gene was bombarded into the cells along with the nit1 gene, transformants carrying DNA from both plasmids were recovered. In some cases, expression of the unselected gene could be detected. With the advent of nuclear transformation in Chlamydomonas, it becomes the first photosynthetic organism in which both the nuclear and chloroplast compartments can be transformed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase.

Loading next page...
 
/lp/rockefeller-university-press/stable-nuclear-transformation-of-chlamydomonas-using-the-chlamydomonas-47gsJLmXmH
Publisher
Rockefeller University Press
Copyright
© 1989 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
D.O.I.
10.1083/jcb.109.6.2589
Publisher site
See Article on Publisher Site

Abstract

We have developed a nuclear transformation system for Chlamydomonas reinhardtii, using micro-projectile bombardment to introduce the gene encoding nitrate reductase into a nit1 mutant strain which lacks nitrate reductase activity. By using either supercoiled or linear plasmid DNA, transformants were recovered consistently at a low efficiency, on the order of 15 transformants per microgram of plasmid DNA. In all cases the transforming DNA was integrated into the nuclear genome, usually in multiple copies. Most of the introduced copies were genetically linked to each other, and they were unlinked to the original nit1 locus. The transforming DNA and nit+ phenotype were stable through mitosis and meiosis, even in the absence of selection. nit1 transcripts of various sizes were expressed at levels equal to or greater than those in wild-type nit+ strains. In most transformants, nitrate reductase enzyme activity was expressed at approximately wild-type levels. In all transformants, nit1 mRNA and nitrate reductase enzyme activity were repressed in cells grown on ammonium medium, showing that expression of the integrated nit1 genes was regulated normally. When a second plasmid with a nonselectable gene was bombarded into the cells along with the nit1 gene, transformants carrying DNA from both plasmids were recovered. In some cases, expression of the unselected gene could be detected. With the advent of nuclear transformation in Chlamydomonas, it becomes the first photosynthetic organism in which both the nuclear and chloroplast compartments can be transformed.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Dec 1, 1989

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off