Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth

Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and... Once escaped from the quiescence niche, precursor cells interact with stromal components that support their survival, proliferation, and differentiation. We examined interplays between human myogenic precursor cells (mpc) and monocyte/macrophages (MP), the main stromal cell type observed at site of muscle regeneration. mpc selectively and specifically attracted monocytes in vitro after their release from quiescence, chemotaxis declining with differentiation. A DNA macroarray–based strategy identified five chemotactic factors accounting for 77% of chemotaxis: MP-derived chemokine, monocyte chemoattractant protein-1, fractalkine, VEGF, and the urokinase system. MP showed lower constitutive chemotactic activity than mpc, but attracted monocytes much strongly than mpc upon cross-stimulation, suggesting mpc-induced and predominantly MP-supported amplification of monocyte recruitment. Determination of 3 Hthymidine incorporation, oligosomal DNA levels and annexin-V binding showed that MP stimulate mpc proliferation by soluble factors, and rescue mpc from apoptosis by direct contacts. We conclude that once activated, mpc, which are located close by capillaries, initiate monocyte recruitment and interplay with MP to amplify chemotaxis and enhance muscle growth. skeletal muscle satellite cells; stromal support; muscle regeneration; chemotaxis; myogenesis Footnotes B. Chazaud and C. Sonnet contributed equally to this work. Anne-Cécile Rimaniol's present address is SPI-BIO, Service de Neurovirologie, CEA, Institut Paris Sud sur les Cytokines, 92260 Fontenay-aux-Roses, France. Abbreviations used in this paper: FKN, fractalkine; HGF, hepatocyte growth factor; HMVEC, human adult microvascular endothelial cells; MCP-1, monocyte chemoattractant protein-1; MDC, MP-derived chemokine; MP, macrophages; mpc, myogenic precursor cells; PBMC, peripheral blood mononuclear cells; uPA, urokinase; uPAR, urokinase type plasminogen-activator receptor. Submitted: 5 December 2002 Accepted: 29 September 2003 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth

Loading next page...
 
/lp/rockefeller-university-press/satellite-cells-attract-monocytes-and-use-macrophages-as-a-support-to-W00uOVOYtv
Publisher
Rockefeller University Press
Copyright
© 2003 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
D.O.I.
10.1083/jcb.200212046
Publisher site
See Article on Publisher Site

Abstract

Once escaped from the quiescence niche, precursor cells interact with stromal components that support their survival, proliferation, and differentiation. We examined interplays between human myogenic precursor cells (mpc) and monocyte/macrophages (MP), the main stromal cell type observed at site of muscle regeneration. mpc selectively and specifically attracted monocytes in vitro after their release from quiescence, chemotaxis declining with differentiation. A DNA macroarray–based strategy identified five chemotactic factors accounting for 77% of chemotaxis: MP-derived chemokine, monocyte chemoattractant protein-1, fractalkine, VEGF, and the urokinase system. MP showed lower constitutive chemotactic activity than mpc, but attracted monocytes much strongly than mpc upon cross-stimulation, suggesting mpc-induced and predominantly MP-supported amplification of monocyte recruitment. Determination of 3 Hthymidine incorporation, oligosomal DNA levels and annexin-V binding showed that MP stimulate mpc proliferation by soluble factors, and rescue mpc from apoptosis by direct contacts. We conclude that once activated, mpc, which are located close by capillaries, initiate monocyte recruitment and interplay with MP to amplify chemotaxis and enhance muscle growth. skeletal muscle satellite cells; stromal support; muscle regeneration; chemotaxis; myogenesis Footnotes B. Chazaud and C. Sonnet contributed equally to this work. Anne-Cécile Rimaniol's present address is SPI-BIO, Service de Neurovirologie, CEA, Institut Paris Sud sur les Cytokines, 92260 Fontenay-aux-Roses, France. Abbreviations used in this paper: FKN, fractalkine; HGF, hepatocyte growth factor; HMVEC, human adult microvascular endothelial cells; MCP-1, monocyte chemoattractant protein-1; MDC, MP-derived chemokine; MP, macrophages; mpc, myogenic precursor cells; PBMC, peripheral blood mononuclear cells; uPA, urokinase; uPAR, urokinase type plasminogen-activator receptor. Submitted: 5 December 2002 Accepted: 29 September 2003

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Dec 8, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off