Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Pendulin, a Drosophila protein with cell cycle-dependent nuclear localization, is required for normal cell proliferation.

Pendulin, a Drosophila protein with cell cycle-dependent nuclear localization, is required for... We describe the dynamic intracellular localization of Drosophila Pendulin and its role in the control of cell proliferation. Pendulin is a new member of a superfamily of proteins which contains Armadillo (Arm) repeats and displays extensive sequence similarities with the Srp1 protein from yeast, with RAG-1 interacting proteins from humans, and with the importin protein from Xenopus. Almost the entire polypeptide chain of Pendulin is composed of degenerate tandem repeats of approximately 42 amino acids each. A short NH2-terminal domain contains adjacent consensus sequences for nuclear localization and cdc2 kinase phosphorylation. The subcellular distribution of Pendulin is dependent on the phase of cell cycle. During interphase, Pendulin protein is exclusively found in the cytoplasm of embryonic cells. At the transition between G2 and M-phase, Pendulin rapidly translocates into the nuclei where it is distributed throughout the nucleoplasm and the areas around the chromosomes. In the larval CNS, Pendulin is predominantly expressed in the dividing neuroblasts, where it undergoes the same cell cycle-dependent redistribution as in embryos. Pendulin is encoded by the oho31 locus and is expressed both maternally and zygotically. We describe the phenotypes of recessive lethal mutations in the oho31 gene that result in a massive decrease or loss of zygotic Pendulin expression. Hematopoietic cells of mutant larvae overproliferate and form melanotic tumors, suggesting that Pendulin normally acts as a blood cell tumor suppressor. In contrast, growth and proliferation in imaginal tissues are reduced and irregular, resulting in abnormal development of imaginal discs and the CNS of the larvae. This phenotype shows that Pendulin is required for normal growth regulation. Based on the structure of the protein, we propose that Pendulin may serve as an adaptor molecule to form complexes with other proteins. The sequence similarity with importin indicates that Pendulin may play a role in the nuclear import of karyophilic proteins and some of these may be required for the normal transmission and function of proliferative signals in the cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Pendulin, a Drosophila protein with cell cycle-dependent nuclear localization, is required for normal cell proliferation.

The Journal of Cell Biology , Volume 129 (6): 1491 – Jun 15, 1995

Loading next page...
 
/lp/rockefeller-university-press/pendulin-a-drosophila-protein-with-cell-cycle-dependent-nuclear-0czlajoyWu

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Rockefeller University Press
Copyright
© 1995 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
DOI
10.1083/jcb.129.6.1491
Publisher site
See Article on Publisher Site

Abstract

We describe the dynamic intracellular localization of Drosophila Pendulin and its role in the control of cell proliferation. Pendulin is a new member of a superfamily of proteins which contains Armadillo (Arm) repeats and displays extensive sequence similarities with the Srp1 protein from yeast, with RAG-1 interacting proteins from humans, and with the importin protein from Xenopus. Almost the entire polypeptide chain of Pendulin is composed of degenerate tandem repeats of approximately 42 amino acids each. A short NH2-terminal domain contains adjacent consensus sequences for nuclear localization and cdc2 kinase phosphorylation. The subcellular distribution of Pendulin is dependent on the phase of cell cycle. During interphase, Pendulin protein is exclusively found in the cytoplasm of embryonic cells. At the transition between G2 and M-phase, Pendulin rapidly translocates into the nuclei where it is distributed throughout the nucleoplasm and the areas around the chromosomes. In the larval CNS, Pendulin is predominantly expressed in the dividing neuroblasts, where it undergoes the same cell cycle-dependent redistribution as in embryos. Pendulin is encoded by the oho31 locus and is expressed both maternally and zygotically. We describe the phenotypes of recessive lethal mutations in the oho31 gene that result in a massive decrease or loss of zygotic Pendulin expression. Hematopoietic cells of mutant larvae overproliferate and form melanotic tumors, suggesting that Pendulin normally acts as a blood cell tumor suppressor. In contrast, growth and proliferation in imaginal tissues are reduced and irregular, resulting in abnormal development of imaginal discs and the CNS of the larvae. This phenotype shows that Pendulin is required for normal growth regulation. Based on the structure of the protein, we propose that Pendulin may serve as an adaptor molecule to form complexes with other proteins. The sequence similarity with importin indicates that Pendulin may play a role in the nuclear import of karyophilic proteins and some of these may be required for the normal transmission and function of proliferative signals in the cells.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Jun 15, 1995

There are no references for this article.