Modulation of K channels in dialyzed squid axons. ATP-mediated phosphorylation.

Modulation of K channels in dialyzed squid axons. ATP-mediated phosphorylation. In squid axons, internally applied ATP potentiates the magnitude of the potassium conductance and slows down its activation kinetics. This effect was characterized using internally dialyzed axons under voltage-clamp conditions. Both amplitude potentiation and kinetic slow-down effects are very selective towards ATP, other nucleotides like GTP and ITP are ineffective in millimolar concentrations. The current potentiation Km for ATP is near 10 microM with no further effects for concentrations greater than 100 microM. ATP effect is most likely produced via a phosphorylative reaction because Mg ion is an obligatory requirement and nonhydrolyzable ATP analogues are without effect. In the presence of ATP, the K current presents more delay, resembling a Cole-Moore effect due to local hyperpolarization of the channel. ATP effect induces a 10-20 mV shift in both activation and inactivation parameters towards more depolarized potentials. As a consequence of this shift, conductance-voltage curves with and without ATP cross at approximately -40 mV. This result is consistent with the hyperpolarization observed with ATP depletion, which is reversed by ATP addition. At potentials around the resting value, addition of ATP removes almost completely K current slow inactivation. It is suggested that a change in the amount of the slow inactivation is responsible for the differences in current amplitude with and without ATP, possibly as a consequence of the additional negative charge carried by the phosphate group. However, a modification of the local potential is not enough to explain completely the differences under the two conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of General Physiology Rockefeller University Press

Modulation of K channels in dialyzed squid axons. ATP-mediated phosphorylation.

The Journal of General Physiology, Volume 93 (6): 1195 – Jun 1, 1989

Loading next page...
 
/lp/rockefeller-university-press/modulation-of-k-channels-in-dialyzed-squid-axons-atp-mediated-Xb6zARmeDg
Publisher
Rockefeller University Press
Copyright
© 1989 Rockefeller University Press
ISSN
0022-1295
eISSN
1540-7748
DOI
10.1085/jgp.93.6.1195
Publisher site
See Article on Publisher Site

Abstract

In squid axons, internally applied ATP potentiates the magnitude of the potassium conductance and slows down its activation kinetics. This effect was characterized using internally dialyzed axons under voltage-clamp conditions. Both amplitude potentiation and kinetic slow-down effects are very selective towards ATP, other nucleotides like GTP and ITP are ineffective in millimolar concentrations. The current potentiation Km for ATP is near 10 microM with no further effects for concentrations greater than 100 microM. ATP effect is most likely produced via a phosphorylative reaction because Mg ion is an obligatory requirement and nonhydrolyzable ATP analogues are without effect. In the presence of ATP, the K current presents more delay, resembling a Cole-Moore effect due to local hyperpolarization of the channel. ATP effect induces a 10-20 mV shift in both activation and inactivation parameters towards more depolarized potentials. As a consequence of this shift, conductance-voltage curves with and without ATP cross at approximately -40 mV. This result is consistent with the hyperpolarization observed with ATP depletion, which is reversed by ATP addition. At potentials around the resting value, addition of ATP removes almost completely K current slow inactivation. It is suggested that a change in the amount of the slow inactivation is responsible for the differences in current amplitude with and without ATP, possibly as a consequence of the additional negative charge carried by the phosphate group. However, a modification of the local potential is not enough to explain completely the differences under the two conditions.

Journal

The Journal of General PhysiologyRockefeller University Press

Published: Jun 1, 1989

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off