Interaction of the retinol/cellular retinol-binding protein complex with isolated nuclei and nuclear components.

Interaction of the retinol/cellular retinol-binding protein complex with isolated nuclei and... Retinol (vitamin A alcohol) is involved in the proper differentiation of epithelia. The mechanism of this involvement is unknown. We have previously reported that purified cellular retinol-binding (CRBP) will mediate specific binding of retinol to nuclei isolated from rat liver. We now report that pure CRBP delivers retinol to the specific nuclear binding sites without itself remaining bound. Triton X-100-treated nuclei retain the majority of these binding sites. CRBP is also capable of delivering retinol specifically to isolated chromatin with no apparent loss of binding sites, as compared to whole nuclei. CRBP again does not remain bound after transferring retinol to the chromatin binding sites. When isolated nuclei are incubated with 3Hretinol-CRBP, sectioned, and autoradiographed, specifically bound retinol is found distributed throughout the nuclei. Thus, CRBP delivers retinol to the interior of the nucleus, to specific binding sites which are primarily, if not solely, on the chromatin. The binding of retinol to these sites may affect gene expression. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Interaction of the retinol/cellular retinol-binding protein complex with isolated nuclei and nuclear components.

The Journal of Cell Biology, Volume 91 (1): 63 – Oct 1, 1981

Loading next page...
 
/lp/rockefeller-university-press/interaction-of-the-retinol-cellular-retinol-binding-protein-complex-KtukvU0Zma
Publisher
Rockefeller University Press
Copyright
© 1981 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
DOI
10.1083/jcb.91.1.63
Publisher site
See Article on Publisher Site

Abstract

Retinol (vitamin A alcohol) is involved in the proper differentiation of epithelia. The mechanism of this involvement is unknown. We have previously reported that purified cellular retinol-binding (CRBP) will mediate specific binding of retinol to nuclei isolated from rat liver. We now report that pure CRBP delivers retinol to the specific nuclear binding sites without itself remaining bound. Triton X-100-treated nuclei retain the majority of these binding sites. CRBP is also capable of delivering retinol specifically to isolated chromatin with no apparent loss of binding sites, as compared to whole nuclei. CRBP again does not remain bound after transferring retinol to the chromatin binding sites. When isolated nuclei are incubated with 3Hretinol-CRBP, sectioned, and autoradiographed, specifically bound retinol is found distributed throughout the nuclei. Thus, CRBP delivers retinol to the interior of the nucleus, to specific binding sites which are primarily, if not solely, on the chromatin. The binding of retinol to these sites may affect gene expression.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Oct 1, 1981

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off