Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis

Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory... Macrophages (MPs) are important for skeletal muscle regeneration in vivo and may exert beneficial effects on myogenic cell growth through mitogenic and antiapoptotic activities in vitro. However, MPs are highly versatile and may exert various, and even opposite, functions depending on their activation state. We studied monocyte (MO)/MP phenotypes and functions during skeletal muscle repair. Selective labeling of circulating MOs by latex beads in CX3CR1 GFP/+ mice showed that injured muscle recruited only CX3CR1 lo /Ly-6C + MOs from blood that exhibited a nondividing, F4/80 lo , proinflammatory profile. Then, within muscle, these cells switched their phenotype to become proliferating antiinflammatory CX3CR1 hi /Ly-6C − cells that further differentiated into F4/80 hi MPs. In vitro, phagocytosis of muscle cell debris induced a switch of proinflammatory MPs toward an antiinflammatory phenotype releasing transforming growth factor β1. In co-cultures, inflammatory MPs stimulated myogenic cell proliferation, whereas antiinflammatory MPs exhibited differentiating activity, assessed by both myogenin expression and fusion into myotubes. Finally, depletion of circulating MOs in CD11b–diphtheria toxin receptor mice at the time of injury totally prevented muscle regeneration, whereas depletion of intramuscular F4/80 hi MPs at later stages reduced the diameter of regenerating fibers. In conclusion, injured skeletal muscle recruits MOs exhibiting inflammatory profiles that operate phagocytosis and rapidly convert to antiinflammatory MPs that stimulate myogenesis and fiber growth. Footnotes Abbreviations used: CCR, CC chemokine receptor; clo-lip, clodronate-encapsulated liposome; DEX, dexamethasone; DT, diphtheria toxin; DTR, DT receptor; LX, latex bead; MO, monocyte; MP, macrophage; mpc, myogenic precursor cell; PPAR, peroxisome proliferator-activated receptor; SLPI, secretory leukocyte protease inhibitor; TA, tibialis anterior. Submitted: 8 January 2007 Accepted: 21 March 2007 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Experimental Medicine Rockefeller University Press

Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis

Loading next page...
 
/lp/rockefeller-university-press/inflammatory-monocytes-recruited-after-skeletal-muscle-injury-switch-b3njJWhDoy
Publisher
Rockefeller University Press
Copyright
Copyright © 2007, by The Rockefeller University Press
ISSN
0022-1007
eISSN
1540-9538
D.O.I.
10.1084/jem.20070075
Publisher site
See Article on Publisher Site

Abstract

Macrophages (MPs) are important for skeletal muscle regeneration in vivo and may exert beneficial effects on myogenic cell growth through mitogenic and antiapoptotic activities in vitro. However, MPs are highly versatile and may exert various, and even opposite, functions depending on their activation state. We studied monocyte (MO)/MP phenotypes and functions during skeletal muscle repair. Selective labeling of circulating MOs by latex beads in CX3CR1 GFP/+ mice showed that injured muscle recruited only CX3CR1 lo /Ly-6C + MOs from blood that exhibited a nondividing, F4/80 lo , proinflammatory profile. Then, within muscle, these cells switched their phenotype to become proliferating antiinflammatory CX3CR1 hi /Ly-6C − cells that further differentiated into F4/80 hi MPs. In vitro, phagocytosis of muscle cell debris induced a switch of proinflammatory MPs toward an antiinflammatory phenotype releasing transforming growth factor β1. In co-cultures, inflammatory MPs stimulated myogenic cell proliferation, whereas antiinflammatory MPs exhibited differentiating activity, assessed by both myogenin expression and fusion into myotubes. Finally, depletion of circulating MOs in CD11b–diphtheria toxin receptor mice at the time of injury totally prevented muscle regeneration, whereas depletion of intramuscular F4/80 hi MPs at later stages reduced the diameter of regenerating fibers. In conclusion, injured skeletal muscle recruits MOs exhibiting inflammatory profiles that operate phagocytosis and rapidly convert to antiinflammatory MPs that stimulate myogenesis and fiber growth. Footnotes Abbreviations used: CCR, CC chemokine receptor; clo-lip, clodronate-encapsulated liposome; DEX, dexamethasone; DT, diphtheria toxin; DTR, DT receptor; LX, latex bead; MO, monocyte; MP, macrophage; mpc, myogenic precursor cell; PPAR, peroxisome proliferator-activated receptor; SLPI, secretory leukocyte protease inhibitor; TA, tibialis anterior. Submitted: 8 January 2007 Accepted: 21 March 2007

Journal

The Journal of Experimental MedicineRockefeller University Press

Published: May 14, 2007

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off