Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme

Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human... Proliferating embryonic and cancer cells preferentially use aerobic glycolysis to support growth, a metabolic alteration commonly referred to as the “Warburg effect.” Here, we show that the glycolytic enzyme hexokinase 2 (HK2) is crucial for the Warburg effect in human glioblastoma multiforme (GBM), the most common malignant brain tumor. In contrast to normal brain and low-grade gliomas, which express predominantly HK1, GBMs show increased HK2 expression. HK2 expression correlates with worse overall survival of GBM patients. Depletion of HK2, but neither HK1 nor pyruvate kinase M2, in GBM cells restored oxidative glucose metabolism and increased sensitivity to cell death inducers such as radiation and temozolomide. Intracranial xenografts of HK2-depleted GBM cells showed decreased proliferation and angiogenesis, but increased invasion, as well as diminished expression of hypoxia inducible factor 1α and vascular endothelial growth factor. In contrast, exogenous HK2 expression in GBM cells led to increased proliferation, therapeutic resistance, and intracranial growth. Growth was dependent on both glucose phosphorylation and mitochondrial translocation mediated by AKT signaling, which is often aberrantly activated in GBMs. Collectively, these findings suggest that therapeutic strategies to modulate the Warburg effect, such as targeting of HK2, may interfere with growth and therapeutic sensitivity of some GBMs. Submitted: 21 July 2010 Accepted: 4 January 2011 This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms ). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/ ). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Experimental Medicine Rockefeller University Press

Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme

Loading next page...
 
/lp/rockefeller-university-press/hexokinase-2-is-a-key-mediator-of-aerobic-glycolysis-and-promotes-THOUmATqvt

References (46)

Publisher
Rockefeller University Press
Copyright
© 2011 Wolf et al.
ISSN
0022-1007
eISSN
1540-9538
DOI
10.1084/jem.20101470
pmid
21242296
Publisher site
See Article on Publisher Site

Abstract

Proliferating embryonic and cancer cells preferentially use aerobic glycolysis to support growth, a metabolic alteration commonly referred to as the “Warburg effect.” Here, we show that the glycolytic enzyme hexokinase 2 (HK2) is crucial for the Warburg effect in human glioblastoma multiforme (GBM), the most common malignant brain tumor. In contrast to normal brain and low-grade gliomas, which express predominantly HK1, GBMs show increased HK2 expression. HK2 expression correlates with worse overall survival of GBM patients. Depletion of HK2, but neither HK1 nor pyruvate kinase M2, in GBM cells restored oxidative glucose metabolism and increased sensitivity to cell death inducers such as radiation and temozolomide. Intracranial xenografts of HK2-depleted GBM cells showed decreased proliferation and angiogenesis, but increased invasion, as well as diminished expression of hypoxia inducible factor 1α and vascular endothelial growth factor. In contrast, exogenous HK2 expression in GBM cells led to increased proliferation, therapeutic resistance, and intracranial growth. Growth was dependent on both glucose phosphorylation and mitochondrial translocation mediated by AKT signaling, which is often aberrantly activated in GBMs. Collectively, these findings suggest that therapeutic strategies to modulate the Warburg effect, such as targeting of HK2, may interfere with growth and therapeutic sensitivity of some GBMs. Submitted: 21 July 2010 Accepted: 4 January 2011 This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms ). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/ ).

Journal

The Journal of Experimental MedicineRockefeller University Press

Published: Feb 14, 2011

There are no references for this article.