Fibronectin localization in the rat glomerulus.

Fibronectin localization in the rat glomerulus. Fibronectin (FN) has been localized in the rat glomerulus using indirect immunolabeling. It was demonstrated in frozen sections by immunofluorescence, in sections of fixed kidneys by both peroxidase and ferritin-labeled antibodies, and in isolated glomerular basement membranes (GBM) with ferritin-labeled antibodies. Complementary and convergent results were obtained with these approaches. FN was most abundant in the mesangial matrix where it was especially concentrated at the interface between the endothelial and mesangial cells. In the peripheral capillary loop, FN was also detected in the laminae rarae (interna and externa) of the GBM--i.e., between the endothelial and epithelial cells, respectively, and the GBM. These findings indicate that FN is an important constituent of the glomerulus, and they are compatible with the assumption that, in the glomerulus, as in cultured cells, FN is involved in cell-to-cell (mesangial-mesangial, mesangial-endothelial) and cell-to-substrate (mesangial cell-mesangial matrix, epithelium-GBM, endothelium-GBM) attachment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Fibronectin localization in the rat glomerulus.

Loading next page...
 
/lp/rockefeller-university-press/fibronectin-localization-in-the-rat-glomerulus-vhlWtHbkUf
Publisher
Rockefeller University Press
Copyright
© 1980 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
DOI
10.1083/jcb.87.3.691
Publisher site
See Article on Publisher Site

Abstract

Fibronectin (FN) has been localized in the rat glomerulus using indirect immunolabeling. It was demonstrated in frozen sections by immunofluorescence, in sections of fixed kidneys by both peroxidase and ferritin-labeled antibodies, and in isolated glomerular basement membranes (GBM) with ferritin-labeled antibodies. Complementary and convergent results were obtained with these approaches. FN was most abundant in the mesangial matrix where it was especially concentrated at the interface between the endothelial and mesangial cells. In the peripheral capillary loop, FN was also detected in the laminae rarae (interna and externa) of the GBM--i.e., between the endothelial and epithelial cells, respectively, and the GBM. These findings indicate that FN is an important constituent of the glomerulus, and they are compatible with the assumption that, in the glomerulus, as in cultured cells, FN is involved in cell-to-cell (mesangial-mesangial, mesangial-endothelial) and cell-to-substrate (mesangial cell-mesangial matrix, epithelium-GBM, endothelium-GBM) attachment.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Dec 1, 1980

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off