Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro.

Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro. Analyses were made of the requirements for the formation of a continuous basal lamina during myogenesis of quail muscle in vitro. A culture system was developed in which mass cultures of differentiating muscle cells were embedded in a native gel of rat tail collagen. Fibroblastic cells, which were also present in the cultures, migrated into the gel and within a few days surrounded the newly formed myotubes. In this environment, a continuous basal lamina was formed at the surface of the myotubes as demonstrated by immunofluorescent staining with monoclonal antibodies against type IV collagen, laminin, and heparan sulfate, as well as by electron microscopic immunolocalization. To distinguish between the role of the fibroblasts and the collagen gel in promoting basal lamina formation, clones of quail muscle cells lacking fibroblasts were subsequently embedded in a native rat tail collagen gel. Under these conditions, only very limited fluorescent staining for basement membrane components was observed associated with the myotubes. However, the introduction of chick muscle or skin fibroblasts into the clonal cultures just before gel formation resulted in the formation of an extensive basal lamina on the surface of the myotubes. Conditioned medium from fibroblast cultures by itself was not effective in promoting basal lamina formation. These results clearly show that during myogenesis in vitro fibroblasts must be in close proximity to the myotubes for a continuous basal lamina to form. These results probably relate closely to the interactions that must occur during myogenesis in vivo between the muscle cells and the surrounding connective tissue including the developing tendons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro.

Loading next page...
 
/lp/rockefeller-university-press/fibroblasts-promote-the-formation-of-a-continuous-basal-lamina-during-G6zHQ2aUDO
Publisher
Rockefeller University Press
Copyright
© 1986 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
DOI
10.1083/jcb.102.3.740
Publisher site
See Article on Publisher Site

Abstract

Analyses were made of the requirements for the formation of a continuous basal lamina during myogenesis of quail muscle in vitro. A culture system was developed in which mass cultures of differentiating muscle cells were embedded in a native gel of rat tail collagen. Fibroblastic cells, which were also present in the cultures, migrated into the gel and within a few days surrounded the newly formed myotubes. In this environment, a continuous basal lamina was formed at the surface of the myotubes as demonstrated by immunofluorescent staining with monoclonal antibodies against type IV collagen, laminin, and heparan sulfate, as well as by electron microscopic immunolocalization. To distinguish between the role of the fibroblasts and the collagen gel in promoting basal lamina formation, clones of quail muscle cells lacking fibroblasts were subsequently embedded in a native rat tail collagen gel. Under these conditions, only very limited fluorescent staining for basement membrane components was observed associated with the myotubes. However, the introduction of chick muscle or skin fibroblasts into the clonal cultures just before gel formation resulted in the formation of an extensive basal lamina on the surface of the myotubes. Conditioned medium from fibroblast cultures by itself was not effective in promoting basal lamina formation. These results clearly show that during myogenesis in vitro fibroblasts must be in close proximity to the myotubes for a continuous basal lamina to form. These results probably relate closely to the interactions that must occur during myogenesis in vivo between the muscle cells and the surrounding connective tissue including the developing tendons.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Mar 1, 1986

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off