ENERGY, QUANTA, AND VISION

ENERGY, QUANTA, AND VISION 1. Direct measurements of the minimum energy required for threshold vision under optimal physiological conditions yield values between 2.1 and 5.7 x 10 –10 ergs at the cornea, which correspond to between 54 and 148 quanta of blue-green light. 2. These values are at the cornea. To yield physiologically significant data they must be corrected for corneal reflection, which is 4 per cent; for ocular media absorption, which is almost precisely 50 per cent; and for retinal transmission, which is at least 80 per cent. Retinal transmission is derived from previous direct measurements and from new comparisons between the percentage absorption spectrum of visual purple with the dim-vision luminosity function. With these three corrections, the range of 54 to 148 quanta at the cornea becomes as an upper limit 5 to 14 quanta actually absorbed by the retinal rods. 3. This small number of quanta, in comparison with the large number of rods (500) involved, precludes any significant two quantum absorptions per rod, and means that in order to produce a visual effect, one quantum must be absorbed by each of 5 to 14 rods in the retina. 4. Because this number of individual events is so small, it may be derived from an independent statistical study of the relation between the intensity of a light flash and the frequency with which it is seen. Such experiments give values of 5 to 8 for the number of critical events involved at the threshold of vision. Biological variation does not alter these numbers essentially, and the agreement between the values measured directly and those derived from statistical considerations is therefore significant. 5. The results clarify the nature of the fluctuations shown by an organism in response to a stimulus. The general assumption has been that the stimulus is constant and the organism variable. The present considerations show, however, that at the threshold it is the stimulus which is variable, and that the properties of its variation determine the fluctuations found between response and stimulus. Footnotes Submitted: 30 March 1942 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of General Physiology Rockefeller University Press

Loading next page...
 
/lp/rockefeller-university-press/energy-quanta-and-vision-SMvSLyXW1o
Publisher
Rockefeller University Press
Copyright
© 1942 Rockefeller University Press
ISSN
0022-1295
eISSN
1540-7748
DOI
10.1085/jgp.25.6.819
Publisher site
See Article on Publisher Site

Abstract

1. Direct measurements of the minimum energy required for threshold vision under optimal physiological conditions yield values between 2.1 and 5.7 x 10 –10 ergs at the cornea, which correspond to between 54 and 148 quanta of blue-green light. 2. These values are at the cornea. To yield physiologically significant data they must be corrected for corneal reflection, which is 4 per cent; for ocular media absorption, which is almost precisely 50 per cent; and for retinal transmission, which is at least 80 per cent. Retinal transmission is derived from previous direct measurements and from new comparisons between the percentage absorption spectrum of visual purple with the dim-vision luminosity function. With these three corrections, the range of 54 to 148 quanta at the cornea becomes as an upper limit 5 to 14 quanta actually absorbed by the retinal rods. 3. This small number of quanta, in comparison with the large number of rods (500) involved, precludes any significant two quantum absorptions per rod, and means that in order to produce a visual effect, one quantum must be absorbed by each of 5 to 14 rods in the retina. 4. Because this number of individual events is so small, it may be derived from an independent statistical study of the relation between the intensity of a light flash and the frequency with which it is seen. Such experiments give values of 5 to 8 for the number of critical events involved at the threshold of vision. Biological variation does not alter these numbers essentially, and the agreement between the values measured directly and those derived from statistical considerations is therefore significant. 5. The results clarify the nature of the fluctuations shown by an organism in response to a stimulus. The general assumption has been that the stimulus is constant and the organism variable. The present considerations show, however, that at the threshold it is the stimulus which is variable, and that the properties of its variation determine the fluctuations found between response and stimulus. Footnotes Submitted: 30 March 1942

Journal

The Journal of General PhysiologyRockefeller University Press

Published: Jul 20, 1942

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off