Characterization of concentration gradients of a morphogenetically active retinoid in the chick limb bud.

Characterization of concentration gradients of a morphogenetically active retinoid in the chick... It has long been suggested that the generation of biological patterns depends in part on gradients of diffusible substances. In an attempt to bridge the gap between this largely theoretical concept and experimental embryology, we have examined the physiology of diffusion gradients in an actual embryonic field. In particular, we have generated in the chick wing bud concentration gradients of the morphogenetically active retinoid TTNPB, (E)-4-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-prope nyl benzoic acid, a synthetic vitamin A compound. Upon local application of TTNPB the normal 234 digit pattern is duplicated in a way that correlates with the geometry of the underlying TTNPB gradient; low doses of TTNPB lead to a shallow gradient and an additional digit 2, whereas higher doses result in a steep, far-reaching gradient and patterns with additional digits 3 and 4. The experimentally measured TTNPB distribution along the anteroposterior axis, can be modeled by a local source and a dispersed sink. This model correctly predicts the site of specification of digit 2, and provides an empirical estimate of the diffusion coefficient (D) of retinoids in embryonic limb tissue. The numerical value of approximately 10(-7) cm2s-1 for D suggests that retinoids are not freely diffusible in the limb rudiment, but interact with the previously identified cellular retinoic acid binding protein. In addition, D affords an estimate of the time required to establish a diffusion gradient as 3 to 4 h. This time span is in a range compatible with the time scale of pattern specification in developing vertebrate limbs. Our studies support the view that diffusion of morphogenetic substances is a plausible mechanism of pattern formation in secondary embryonic fields. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Characterization of concentration gradients of a morphogenetically active retinoid in the chick limb bud.

The Journal of Cell Biology, Volume 105 (4): 1917 – Oct 1, 1987

Loading next page...
 
/lp/rockefeller-university-press/characterization-of-concentration-gradients-of-a-morphogenetically-YLovyk9GhQ
Publisher
Rockefeller University Press
Copyright
© 1987 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
DOI
10.1083/jcb.105.4.1917
Publisher site
See Article on Publisher Site

Abstract

It has long been suggested that the generation of biological patterns depends in part on gradients of diffusible substances. In an attempt to bridge the gap between this largely theoretical concept and experimental embryology, we have examined the physiology of diffusion gradients in an actual embryonic field. In particular, we have generated in the chick wing bud concentration gradients of the morphogenetically active retinoid TTNPB, (E)-4-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-prope nyl benzoic acid, a synthetic vitamin A compound. Upon local application of TTNPB the normal 234 digit pattern is duplicated in a way that correlates with the geometry of the underlying TTNPB gradient; low doses of TTNPB lead to a shallow gradient and an additional digit 2, whereas higher doses result in a steep, far-reaching gradient and patterns with additional digits 3 and 4. The experimentally measured TTNPB distribution along the anteroposterior axis, can be modeled by a local source and a dispersed sink. This model correctly predicts the site of specification of digit 2, and provides an empirical estimate of the diffusion coefficient (D) of retinoids in embryonic limb tissue. The numerical value of approximately 10(-7) cm2s-1 for D suggests that retinoids are not freely diffusible in the limb rudiment, but interact with the previously identified cellular retinoic acid binding protein. In addition, D affords an estimate of the time required to establish a diffusion gradient as 3 to 4 h. This time span is in a range compatible with the time scale of pattern specification in developing vertebrate limbs. Our studies support the view that diffusion of morphogenetic substances is a plausible mechanism of pattern formation in secondary embryonic fields.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Oct 1, 1987

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off