Cell adhesion and migration in the early vertebrate embryo: location and possible role of the putative fibronectin receptor complex.

Cell adhesion and migration in the early vertebrate embryo: location and possible role of the... Using a combined in vivo and in vitro approach, we have analyzed the immunofluorescent localization and function of a 140,000-mol-wt glycoprotein complex implicated in cell adhesion to fibronectin (FN), with particular emphasis on neural crest cell adhesion and migration. This putative fibronectin receptor complex (FN-receptor) was detectable in almost all tissues derived from each of the three primary germ layers. It was present in both mesenchymal and epithelial cells, and was particularly enriched at sites close to concentrations of FN, e.g., at the basal surfaces of epithelial cells. It was also present on neural crest cells. The distribution and function of this putative receptor was then analyzed on individual cells in vitro. It was diffusely organized on highly locomotory neural crest cells and somitic fibroblasts. Both motile cell types also displayed relatively low numbers of focal contacts and microfilament bundles and limited amounts of localized vinculin, alpha-actinin, and endogenous FN. In contrast, the FN-receptor in stationary embryonic cells, i.e., somitic cells after long-term culture or ectodermal cells, existed in characteristic linear patterns generally co-distributed with alpha-actinin and fibers of endogenous FN. Anti-FN-receptor antibodies inhibited the adhesion to FN of motile embryonic cells, but not of stationary fibroblasts. However, these same antibodies adsorbed to substrata readily mediated adhesion and spreading of cells, but were much less effective for cell migration. Our results demonstrate a widespread occurrence in vivo of the putative FN-receptor, with high concentrations near FN. Embryonic cell migration was associated with a diffuse organization of this putative receptor on the cell surface in presumably labile adhesions, whereas stationary cells were anchored to the substratum at specific sites linked to the cytoskeleton near local concentrations of FN-receptor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Cell adhesion and migration in the early vertebrate embryo: location and possible role of the putative fibronectin receptor complex.

Loading next page...
 
/lp/rockefeller-university-press/cell-adhesion-and-migration-in-the-early-vertebrate-embryo-location-moTQ5NZ3BI
Publisher
Rockefeller University Press
Copyright
© 1986 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
DOI
10.1083/jcb.102.1.160
Publisher site
See Article on Publisher Site

Abstract

Using a combined in vivo and in vitro approach, we have analyzed the immunofluorescent localization and function of a 140,000-mol-wt glycoprotein complex implicated in cell adhesion to fibronectin (FN), with particular emphasis on neural crest cell adhesion and migration. This putative fibronectin receptor complex (FN-receptor) was detectable in almost all tissues derived from each of the three primary germ layers. It was present in both mesenchymal and epithelial cells, and was particularly enriched at sites close to concentrations of FN, e.g., at the basal surfaces of epithelial cells. It was also present on neural crest cells. The distribution and function of this putative receptor was then analyzed on individual cells in vitro. It was diffusely organized on highly locomotory neural crest cells and somitic fibroblasts. Both motile cell types also displayed relatively low numbers of focal contacts and microfilament bundles and limited amounts of localized vinculin, alpha-actinin, and endogenous FN. In contrast, the FN-receptor in stationary embryonic cells, i.e., somitic cells after long-term culture or ectodermal cells, existed in characteristic linear patterns generally co-distributed with alpha-actinin and fibers of endogenous FN. Anti-FN-receptor antibodies inhibited the adhesion to FN of motile embryonic cells, but not of stationary fibroblasts. However, these same antibodies adsorbed to substrata readily mediated adhesion and spreading of cells, but were much less effective for cell migration. Our results demonstrate a widespread occurrence in vivo of the putative FN-receptor, with high concentrations near FN. Embryonic cell migration was associated with a diffuse organization of this putative receptor on the cell surface in presumably labile adhesions, whereas stationary cells were anchored to the substratum at specific sites linked to the cytoskeleton near local concentrations of FN-receptor.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Jan 1, 1986

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off