Block of current through single calcium channels by Fe, Co, and Ni. Location of the transition metal binding site in the pore.

Block of current through single calcium channels by Fe, Co, and Ni. Location of the transition... The blocking actions of Fe2+, Co2+, and Ni2+ on unitary currents carried by Ba2+ through single dihydropyridine-sensitive Ca2+ channels were recorded from cell-attached patches on myotubes from the mouse C2 cell line. Adding millimolar concentrations of blocker to patch electrodes containing 110 mM BaCl2 produced discrete excursions to the closed channel level. The kinetics of blocking and unblocking were well described with a simple model of open channel block. Hyperpolarization speeded the exit of all of the blockers from the channel, as expected if the blocking site resides within the pore. The block by Ni2+ differs from that produced by Fe2+ and Co2+ because Ni2+ enters the channel approximately 20 times more slowly and exits approximately 50 times more slowly. Ni2+ also differs from the other transition metals because at millimolar concentrations it reduces the amplitude of the unitary current in a concentration-dependent manner. The results are consistent with the idea that the rate-limiting step for ion entry into the channel is water loss at its inner coordination sphere; unblocking, on the other hand, cannot be explained in terms of simple coulombic interactions arising from differences in ion size. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of General Physiology Rockefeller University Press

Block of current through single calcium channels by Fe, Co, and Ni. Location of the transition metal binding site in the pore.

Loading next page...
 
/lp/rockefeller-university-press/block-of-current-through-single-calcium-channels-by-fe-co-and-ni-MRltLRMhc0
Publisher site
See Article on Publisher Site

Abstract

The blocking actions of Fe2+, Co2+, and Ni2+ on unitary currents carried by Ba2+ through single dihydropyridine-sensitive Ca2+ channels were recorded from cell-attached patches on myotubes from the mouse C2 cell line. Adding millimolar concentrations of blocker to patch electrodes containing 110 mM BaCl2 produced discrete excursions to the closed channel level. The kinetics of blocking and unblocking were well described with a simple model of open channel block. Hyperpolarization speeded the exit of all of the blockers from the channel, as expected if the blocking site resides within the pore. The block by Ni2+ differs from that produced by Fe2+ and Co2+ because Ni2+ enters the channel approximately 20 times more slowly and exits approximately 50 times more slowly. Ni2+ also differs from the other transition metals because at millimolar concentrations it reduces the amplitude of the unitary current in a concentration-dependent manner. The results are consistent with the idea that the rate-limiting step for ion entry into the channel is water loss at its inner coordination sphere; unblocking, on the other hand, cannot be explained in terms of simple coulombic interactions arising from differences in ion size.

Journal

The Journal of General PhysiologyRockefeller University Press

Published: Feb 1, 1991

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off