Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Bcl-2 inhibits the mitochondrial release of an apoptogenic protease.

Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. Bcl-2 belongs to a family of apoptosis-regulatory proteins which incorporate into the outer mitochondrial as well as nuclear membranes. The mechanism by which the proto-oncogene product Bcl-2 inhibits apoptosis is thus far elusive. We and others have shown previously that the first biochemical alteration detectable in cells undergoing apoptosis, well before nuclear changes become manifest, is a collapse of the mitochondrial inner membrane potential (delta psi m), suggesting the involvement of mitochondrial products in the apoptotic cascade. Here we show that mitochondria contain a pre-formed approximately 50-kD protein which is released upon delta psi m disruption and which, in a cell-free in vitro system, causes isolated nuclei to undergo apoptotic changes such as chromatin condensation and internucleosomal DNA fragmentation. This apoptosis-inducing factor (AIF) is blocked by N-benzyloxycarbonyl-Val-Ala-Asp.fluoromethylketone (Z-VAD.fmk), an antagonist of interleukin-1 beta-converting enzyme (ICE)-like proteases that is also an efficient inhibitor of apoptosis in cells. We have tested the effect of Bcl-2 on the formation, release, and action of AIF. When preventing mitochondrial permeability transition (which accounts for the pre-apoptotic delta psi m disruption in cells), Bcl-2 hyperexpressed in the outer mitochondrial membrane also impedes the release of AIF from isolated mitochondria in vitro. In contrast, Bcl-2 does not affect the formation of AIF, which is contained in comparable quantities in control mitochondria and in mitochondria from Bcl-2-hyperexpressing cells. Furthermore, the presence of Bcl-2 in the nuclear membrane does not interfere with the action of AIF on the nucleus, nor does Bcl-2 hyperexpression protect cells against AIF. It thus appears that Bcl-2 prevents apoptosis by favoring the retention of an apoptogenic protease in mitochondria. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Experimental Medicine Rockefeller University Press

Bcl-2 inhibits the mitochondrial release of an apoptogenic protease.

Loading next page...
 
/lp/rockefeller-university-press/bcl-2-inhibits-the-mitochondrial-release-of-an-apoptogenic-protease-BldG7Ea4X6

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Rockefeller University Press
Copyright
© 1996 Rockefeller University Press
ISSN
0022-1007
eISSN
1540-9538
DOI
10.1084/jem.184.4.1331
Publisher site
See Article on Publisher Site

Abstract

Bcl-2 belongs to a family of apoptosis-regulatory proteins which incorporate into the outer mitochondrial as well as nuclear membranes. The mechanism by which the proto-oncogene product Bcl-2 inhibits apoptosis is thus far elusive. We and others have shown previously that the first biochemical alteration detectable in cells undergoing apoptosis, well before nuclear changes become manifest, is a collapse of the mitochondrial inner membrane potential (delta psi m), suggesting the involvement of mitochondrial products in the apoptotic cascade. Here we show that mitochondria contain a pre-formed approximately 50-kD protein which is released upon delta psi m disruption and which, in a cell-free in vitro system, causes isolated nuclei to undergo apoptotic changes such as chromatin condensation and internucleosomal DNA fragmentation. This apoptosis-inducing factor (AIF) is blocked by N-benzyloxycarbonyl-Val-Ala-Asp.fluoromethylketone (Z-VAD.fmk), an antagonist of interleukin-1 beta-converting enzyme (ICE)-like proteases that is also an efficient inhibitor of apoptosis in cells. We have tested the effect of Bcl-2 on the formation, release, and action of AIF. When preventing mitochondrial permeability transition (which accounts for the pre-apoptotic delta psi m disruption in cells), Bcl-2 hyperexpressed in the outer mitochondrial membrane also impedes the release of AIF from isolated mitochondria in vitro. In contrast, Bcl-2 does not affect the formation of AIF, which is contained in comparable quantities in control mitochondria and in mitochondria from Bcl-2-hyperexpressing cells. Furthermore, the presence of Bcl-2 in the nuclear membrane does not interfere with the action of AIF on the nucleus, nor does Bcl-2 hyperexpression protect cells against AIF. It thus appears that Bcl-2 prevents apoptosis by favoring the retention of an apoptogenic protease in mitochondria.

Journal

The Journal of Experimental MedicineRockefeller University Press

Published: Oct 1, 1996

There are no references for this article.