Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes.

Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the... Cationized ferritin (CF) of narrow pI range (7.3-7.5) and the basic dye ruthenium red (RR) have been used as cationic probes to partially characterize anionic sites previously demonstrated in the glomerular basement membrane (GBM). When CF was given i.v. to normal rats and the left kidney was fixed by perfusion 15 min thereafter, clusters of CF molecules were found throughout the lamina rara interna (LRI), lamina rara externa (LRE), and mesangial matrix distributed at regular (approximately 60 nm) intervals. When kidneys were perfused with aldehyde fixative containing RR, small (20 nm) RR-stained particles were seen in the same locations distributed with the same 60 nm repeating pattern, forming a quasiregular, lattice-like arrangement. Fine (approximately 3 nm) filaments connected the sites and extended between them and the membranes of adjoining endothelial and epithelial cells. When CF was given i.v. followed by perfusion with RR in situ, both probes localized to the same sites. CF remained firmly bound after prolonged perfusion with 0.1-0.2 M KCl or NaCl. It was displaced by perfusion with buffers of high ionic strength (0.4-0.5 M KCl) or pH (less than 3.0 or greater than 10.0). CF also bound (clustered at approximately 60 nm intervals) to isolated GBM's, and binding was lost when such isolated GBM's were treated with buffers of high ionic strength or pH. These experiments demonstrate the existence of a quasi-regular, lattice-like network of anionic sites in the LRI and LRE and the mesangial matrix. The sites are demonstrable in vivo (by CF binding), in fixed kidneys (by RR staining), and in isolated GBM's (by CF binding). The results obtained with CF show that the binding of CF (and probably also RR) to the laminae rarae is electrostatic in nature since it is displaced by treatment with buffers of high ionic strength or pH. With RR the sites resemble in morphology and staining properties the proteoglycan particles found in connective tissue matrices and in association with basement membranes in several other locations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes.

The Journal of Cell Biology, Volume 81 (1): 137 – Apr 1, 1979

Loading next page...
 
/lp/rockefeller-university-press/anionic-sites-in-the-glomerular-basement-membrane-in-vivo-and-in-vitro-K0wafyPaGx
Publisher
Rockefeller University Press
Copyright
© 1979 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
DOI
10.1083/jcb.81.1.137
Publisher site
See Article on Publisher Site

Abstract

Cationized ferritin (CF) of narrow pI range (7.3-7.5) and the basic dye ruthenium red (RR) have been used as cationic probes to partially characterize anionic sites previously demonstrated in the glomerular basement membrane (GBM). When CF was given i.v. to normal rats and the left kidney was fixed by perfusion 15 min thereafter, clusters of CF molecules were found throughout the lamina rara interna (LRI), lamina rara externa (LRE), and mesangial matrix distributed at regular (approximately 60 nm) intervals. When kidneys were perfused with aldehyde fixative containing RR, small (20 nm) RR-stained particles were seen in the same locations distributed with the same 60 nm repeating pattern, forming a quasiregular, lattice-like arrangement. Fine (approximately 3 nm) filaments connected the sites and extended between them and the membranes of adjoining endothelial and epithelial cells. When CF was given i.v. followed by perfusion with RR in situ, both probes localized to the same sites. CF remained firmly bound after prolonged perfusion with 0.1-0.2 M KCl or NaCl. It was displaced by perfusion with buffers of high ionic strength (0.4-0.5 M KCl) or pH (less than 3.0 or greater than 10.0). CF also bound (clustered at approximately 60 nm intervals) to isolated GBM's, and binding was lost when such isolated GBM's were treated with buffers of high ionic strength or pH. These experiments demonstrate the existence of a quasi-regular, lattice-like network of anionic sites in the LRI and LRE and the mesangial matrix. The sites are demonstrable in vivo (by CF binding), in fixed kidneys (by RR staining), and in isolated GBM's (by CF binding). The results obtained with CF show that the binding of CF (and probably also RR) to the laminae rarae is electrostatic in nature since it is displaced by treatment with buffers of high ionic strength or pH. With RR the sites resemble in morphology and staining properties the proteoglycan particles found in connective tissue matrices and in association with basement membranes in several other locations.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Apr 1, 1979

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off