Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis.

Altered gene expression in neurons during programmed cell death: identification of c-jun as... We have examined the hypothesis that neuronal programmed cell death requires a genetic program; we used a model wherein rat sympathetic neurons maintained in vitro are deprived of NGF and subsequently undergo apoptosis. To evaluate gene expression potentially necessary for this process, we used a PCR-based technique and in situ hybridization; patterns of general gene repression and selective gene induction were identified in NGF-deprived neurons. A temporal cascade of induced genes included "immediate early genes," which were remarkable in that their induction occurred hours after the initial stimulus of NGF removal and the synthesis of some required ongoing protein synthesis. The cascade also included the cell cycle gene c-myb and the genes encoding the extracellular matrix proteases transin and collagenase. Concurrent in situ hybridization and nuclear staining revealed that while c-jun was induced in most neurons, c-fos induction was restricted to neurons undergoing chromatin condensation, a hallmark of apoptosis. To evaluate the functional role of the proteins encoded by these genes, neutralizing antibodies were injected into neurons. Antibodies specific for either c-Jun or the Fos family (c-Fos, Fos B, Fra-1, and Fra-2) protected NGF-deprived neurons from apoptosis, whereas antibodies specific for Jun B, Jun D, or three nonimmune antibody preparations had no protective effect. Because these induced genes encode proteins ranging from a transcription factor necessary for death to proteases likely involved in tissue remodeling concurrent with death, these data may outline a genetic program responsible for neuronal programmed cell death. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis.

Loading next page...
 
/lp/rockefeller-university-press/altered-gene-expression-in-neurons-during-programmed-cell-death-2YnIOhyQWj
Publisher
Rockefeller University Press
Copyright
© 1994 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
D.O.I.
10.1083/jcb.127.6.1717
Publisher site
See Article on Publisher Site

Abstract

We have examined the hypothesis that neuronal programmed cell death requires a genetic program; we used a model wherein rat sympathetic neurons maintained in vitro are deprived of NGF and subsequently undergo apoptosis. To evaluate gene expression potentially necessary for this process, we used a PCR-based technique and in situ hybridization; patterns of general gene repression and selective gene induction were identified in NGF-deprived neurons. A temporal cascade of induced genes included "immediate early genes," which were remarkable in that their induction occurred hours after the initial stimulus of NGF removal and the synthesis of some required ongoing protein synthesis. The cascade also included the cell cycle gene c-myb and the genes encoding the extracellular matrix proteases transin and collagenase. Concurrent in situ hybridization and nuclear staining revealed that while c-jun was induced in most neurons, c-fos induction was restricted to neurons undergoing chromatin condensation, a hallmark of apoptosis. To evaluate the functional role of the proteins encoded by these genes, neutralizing antibodies were injected into neurons. Antibodies specific for either c-Jun or the Fos family (c-Fos, Fos B, Fra-1, and Fra-2) protected NGF-deprived neurons from apoptosis, whereas antibodies specific for Jun B, Jun D, or three nonimmune antibody preparations had no protective effect. Because these induced genes encode proteins ranging from a transcription factor necessary for death to proteases likely involved in tissue remodeling concurrent with death, these data may outline a genetic program responsible for neuronal programmed cell death.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Dec 15, 1994

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off