A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor.

A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation... A series of ceramide analogues bearing the fluorophore boron dipyrromethene difluoride (BODIPY) were synthesized and evaluated as vital stains for the Golgi apparatus, and as tools for studying lipid traffic between the Golgi apparatus and the plasma membrane of living cells. Studies of the spectral properties of several of the BODIPY-labeled ceramides in lipid vesicles demonstrated that the fluorescence emission maxima were strongly dependent upon the molar density of the probes in the membrane. This was especially evident using N-5-(5,7-dimethyl BODIPY)-1-pentanoyl-D-erythro-sphingosine (C5-DMB-Cer), which exhibited a shift in its emission maximum from green (integral of 515 nm) to red (integral of 620 nm) wavelengths with increasing concentrations. When C5-DMB-Cer was used to label living cells, this property allowed us to differentiate membranes containing high concentrations of the fluorescent lipid and its metabolites (the corresponding analogues of sphingomyelin and glucosylceramide) from other regions of the cell where smaller amounts of the probe were present. Using this approach, prominent red fluorescent labeling of the Golgi apparatus, Golgi apparatus-associated tubulovesicular processes, and putative Golgi apparatus transport vesicles was seen in living human skin fibroblasts, as well as in other cell types. Based on fluorescence ratio imaging microscopy, we estimate that C5-DMB-Cer and its metabolites were present in Golgi apparatus membranes at concentrations up to 5-10 mol %. In addition, the concentration-dependent spectral properties of C5-DMB-Cer were used to monitor the transport of C5-DMB-lipids to the cell surface at 37 degrees C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor.

The Journal of Cell Biology, Volume 113 (6): 1267 – Jun 15, 1991

Loading next page...
 
/lp/rockefeller-university-press/a-novel-fluorescent-ceramide-analogue-for-studying-membrane-traffic-in-feApnWgWrR
Publisher
Rockefeller University Press
Copyright
© 1991 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
D.O.I.
10.1083/jcb.113.6.1267
Publisher site
See Article on Publisher Site

Abstract

A series of ceramide analogues bearing the fluorophore boron dipyrromethene difluoride (BODIPY) were synthesized and evaluated as vital stains for the Golgi apparatus, and as tools for studying lipid traffic between the Golgi apparatus and the plasma membrane of living cells. Studies of the spectral properties of several of the BODIPY-labeled ceramides in lipid vesicles demonstrated that the fluorescence emission maxima were strongly dependent upon the molar density of the probes in the membrane. This was especially evident using N-5-(5,7-dimethyl BODIPY)-1-pentanoyl-D-erythro-sphingosine (C5-DMB-Cer), which exhibited a shift in its emission maximum from green (integral of 515 nm) to red (integral of 620 nm) wavelengths with increasing concentrations. When C5-DMB-Cer was used to label living cells, this property allowed us to differentiate membranes containing high concentrations of the fluorescent lipid and its metabolites (the corresponding analogues of sphingomyelin and glucosylceramide) from other regions of the cell where smaller amounts of the probe were present. Using this approach, prominent red fluorescent labeling of the Golgi apparatus, Golgi apparatus-associated tubulovesicular processes, and putative Golgi apparatus transport vesicles was seen in living human skin fibroblasts, as well as in other cell types. Based on fluorescence ratio imaging microscopy, we estimate that C5-DMB-Cer and its metabolites were present in Golgi apparatus membranes at concentrations up to 5-10 mol %. In addition, the concentration-dependent spectral properties of C5-DMB-Cer were used to monitor the transport of C5-DMB-lipids to the cell surface at 37 degrees C.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Jun 15, 1991

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off