Urine biomarkers of renal renin-angiotensin system activity: Exploratory analysis in humans with and without obstructive sleep apnea.

Urine biomarkers of renal renin-angiotensin system activity: Exploratory analysis in humans with... Obstructive sleep apnea (OSA) may contribute to kidney injury by activation of the renin-angiotensin system (RAS), which is reduced by continuous positive airway pressure (CPAP) therapy. A biomarker in the urine that reflects renal RAS activity could identify patients at risk of kidney injury and monitor their response to CPAP therapy. Nine patients with OSA and six matched control subjects without OSA were recruited. Renal RAS activity was measured by the renovasoconstrictor response to Angiotensin II challenge, a validated marker of RAS activity, and urine samples were collected in all subjects at baseline and repeated in those with OSA following treatment with CPAP. A broad range (1,310) of urine analytes was measured including 26 associated with the RAS signaling pathway. The OSA group was a similar age and weight as the control group (48.7 ± 10.4 vs. 47.7 ± 9.3 yrs; BMI 36.9 ± 7.2 vs. 34.7 ± 2.5 kg/m2 ) and had severe sleep apnea (ODI 51.1 ± 26.8 vs. 4.3 ± 2/hour) and nocturnal hypoxemia (mean SaO2 87 ± 5.2 vs. 92.6 ± 1.1%). CPAP corrected OSA associated with a return of the renovasocontrictor response to Angiotensin II to control levels. Partial least squares (PLS) logistic regression analysis showed significant separation between pre- and post-CPAP levels (p < .002) when all analytes were used, and a strong trend when only RAS-associated analytes were used (p = .05). These findings support the concept that urine analytes may be used to identify OSA patients who are susceptible to kidney injury from OSA before renal function deteriorates and to monitor the impact of CPAP therapy on renal RAS activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physiological reports Pubmed

Urine biomarkers of renal renin-angiotensin system activity: Exploratory analysis in humans with and without obstructive sleep apnea.

Physiological reports, Volume 8 (6): -1437599999 – Apr 2, 2020
Preview Only

Urine biomarkers of renal renin-angiotensin system activity: Exploratory analysis in humans with and without obstructive sleep apnea.

Physiological reports, Volume 8 (6): -1437599999 – Apr 2, 2020

Abstract

Obstructive sleep apnea (OSA) may contribute to kidney injury by activation of the renin-angiotensin system (RAS), which is reduced by continuous positive airway pressure (CPAP) therapy. A biomarker in the urine that reflects renal RAS activity could identify patients at risk of kidney injury and monitor their response to CPAP therapy. Nine patients with OSA and six matched control subjects without OSA were recruited. Renal RAS activity was measured by the renovasoconstrictor response to Angiotensin II challenge, a validated marker of RAS activity, and urine samples were collected in all subjects at baseline and repeated in those with OSA following treatment with CPAP. A broad range (1,310) of urine analytes was measured including 26 associated with the RAS signaling pathway. The OSA group was a similar age and weight as the control group (48.7 ± 10.4 vs. 47.7 ± 9.3 yrs; BMI 36.9 ± 7.2 vs. 34.7 ± 2.5 kg/m2 ) and had severe sleep apnea (ODI 51.1 ± 26.8 vs. 4.3 ± 2/hour) and nocturnal hypoxemia (mean SaO2 87 ± 5.2 vs. 92.6 ± 1.1%). CPAP corrected OSA associated with a return of the renovasocontrictor response to Angiotensin II to control levels. Partial least squares (PLS) logistic regression analysis showed significant separation between pre- and post-CPAP levels (p < .002) when all analytes were used, and a strong trend when only RAS-associated analytes were used (p = .05). These findings support the concept that urine analytes may be used to identify OSA patients who are susceptible to kidney injury from OSA before renal function deteriorates and to monitor the impact of CPAP therapy on renal RAS activity.
Loading next page...
 
/lp/pubmed/urine-biomarkers-of-renal-renin-angiotensin-system-activity-mMt0l4XKFK
DOI
10.14814/phy2.14376
pmid
32207249

Abstract

Obstructive sleep apnea (OSA) may contribute to kidney injury by activation of the renin-angiotensin system (RAS), which is reduced by continuous positive airway pressure (CPAP) therapy. A biomarker in the urine that reflects renal RAS activity could identify patients at risk of kidney injury and monitor their response to CPAP therapy. Nine patients with OSA and six matched control subjects without OSA were recruited. Renal RAS activity was measured by the renovasoconstrictor response to Angiotensin II challenge, a validated marker of RAS activity, and urine samples were collected in all subjects at baseline and repeated in those with OSA following treatment with CPAP. A broad range (1,310) of urine analytes was measured including 26 associated with the RAS signaling pathway. The OSA group was a similar age and weight as the control group (48.7 ± 10.4 vs. 47.7 ± 9.3 yrs; BMI 36.9 ± 7.2 vs. 34.7 ± 2.5 kg/m2 ) and had severe sleep apnea (ODI 51.1 ± 26.8 vs. 4.3 ± 2/hour) and nocturnal hypoxemia (mean SaO2 87 ± 5.2 vs. 92.6 ± 1.1%). CPAP corrected OSA associated with a return of the renovasocontrictor response to Angiotensin II to control levels. Partial least squares (PLS) logistic regression analysis showed significant separation between pre- and post-CPAP levels (p < .002) when all analytes were used, and a strong trend when only RAS-associated analytes were used (p = .05). These findings support the concept that urine analytes may be used to identify OSA patients who are susceptible to kidney injury from OSA before renal function deteriorates and to monitor the impact of CPAP therapy on renal RAS activity.

Journal

Physiological reportsPubmed

Published: Apr 2, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off