The effect of pH and ionic strength on the fluorescence properties of a red emissive DNA-stabilized silver nanocluster.

The effect of pH and ionic strength on the fluorescence properties of a red emissive... DNA-stabilized silver nanoclusters (DNA-AgNCs) are a class of promising fluorophores for imaging and sensing applications. All aspects of their spectroscopic properties are not yet fully characterized, leaving this field still with a number of fundamental studies to be addressed. In this work, we studied the spectroscopic properties of red-emitting DNA-AgNCs at different pH (5 to 9) and ionic strength μ (0.005 to 0.5). The photophysical properties of high performance liquid chromatography (HPLC) purified DNA-AgNCs proved to be constant over a large range of pH and μ, with absorption, emission and fluorescence decay times only being affected at very high pH and μ values. Non-purified DNA-AgNCs were also unaffected by pH and/or μ variations, but significant differences can be observed between the rotational correlation times of purified and non-purified DNA-AgNCs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Methods and applications in fluorescence Pubmed

The effect of pH and ionic strength on the fluorescence properties of a red emissive DNA-stabilized silver nanocluster.

Methods and applications in fluorescence, Volume 8 (1): 1 – Dec 3, 2019
Preview Only

The effect of pH and ionic strength on the fluorescence properties of a red emissive DNA-stabilized silver nanocluster.

Methods and applications in fluorescence, Volume 8 (1): 1 – Dec 3, 2019

Abstract

DNA-stabilized silver nanoclusters (DNA-AgNCs) are a class of promising fluorophores for imaging and sensing applications. All aspects of their spectroscopic properties are not yet fully characterized, leaving this field still with a number of fundamental studies to be addressed. In this work, we studied the spectroscopic properties of red-emitting DNA-AgNCs at different pH (5 to 9) and ionic strength μ (0.005 to 0.5). The photophysical properties of high performance liquid chromatography (HPLC) purified DNA-AgNCs proved to be constant over a large range of pH and μ, with absorption, emission and fluorescence decay times only being affected at very high pH and μ values. Non-purified DNA-AgNCs were also unaffected by pH and/or μ variations, but significant differences can be observed between the rotational correlation times of purified and non-purified DNA-AgNCs.
Loading next page...
 
/lp/pubmed/the-effect-of-ph-and-ionic-strength-on-the-fluorescence-properties-of-0DY7WuzeZ8
DOI
10.1088/2050-6120/ab47f2

Abstract

DNA-stabilized silver nanoclusters (DNA-AgNCs) are a class of promising fluorophores for imaging and sensing applications. All aspects of their spectroscopic properties are not yet fully characterized, leaving this field still with a number of fundamental studies to be addressed. In this work, we studied the spectroscopic properties of red-emitting DNA-AgNCs at different pH (5 to 9) and ionic strength μ (0.005 to 0.5). The photophysical properties of high performance liquid chromatography (HPLC) purified DNA-AgNCs proved to be constant over a large range of pH and μ, with absorption, emission and fluorescence decay times only being affected at very high pH and μ values. Non-purified DNA-AgNCs were also unaffected by pH and/or μ variations, but significant differences can be observed between the rotational correlation times of purified and non-purified DNA-AgNCs.

Journal

Methods and applications in fluorescencePubmed

Published: Dec 3, 2019

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off