Surfactant-dependent critical interfacial tension in silicon carbide membranes for produced water treatment.

Surfactant-dependent critical interfacial tension in silicon carbide membranes for produced water... During fossil oil extraction, a complex water stream known as produced water (PW), is co-extracted. Membrane treatment makes PW re-use possible, but fouling and oil permeation remain major challenges. In this work, membrane fouling and oil retention of Synthetic PW stabilized with a cationic, anionic, zwitterionic or nonionic surfactant, were studied at various surfactant and salt concentrations. We discuss our results in the framework of the Young-Laplace (YL) equation, which predicts for a given membrane, pressure and oil-membrane contact angle, a critical interfacial tension (IFT) below which oil permeation should occur. We observe such a transition from high to low oil retention with decreasing IFT for the anionic (SDS), cationic (CTAB) and non-ionic (TX) surfactant, but at significantly higher critical IFTs than predicted by YL. On the other side, for the zwitterionic DDAPS we do not observe a drop in oil retention, even at the lowest IFT. The discrepancy between our findings and the critical IFT predicted by YL can be explained by the difference between the measured contact angle and the effective contact angle at the wall of the membrane pores. This leads to a surfactant-dependent critical IFT. Additionally, our results point out that zwitterionic surfactants even at the lowest IFT did not present a critical IFT and exhibited low fouling and low oil permeation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of colloid and interface science Pubmed

Surfactant-dependent critical interfacial tension in silicon carbide membranes for produced water treatment.

Journal of colloid and interface science, Volume 571: 10 – Apr 28, 2020
Preview Only

Surfactant-dependent critical interfacial tension in silicon carbide membranes for produced water treatment.

Journal of colloid and interface science, Volume 571: 10 – Apr 28, 2020

Abstract

During fossil oil extraction, a complex water stream known as produced water (PW), is co-extracted. Membrane treatment makes PW re-use possible, but fouling and oil permeation remain major challenges. In this work, membrane fouling and oil retention of Synthetic PW stabilized with a cationic, anionic, zwitterionic or nonionic surfactant, were studied at various surfactant and salt concentrations. We discuss our results in the framework of the Young-Laplace (YL) equation, which predicts for a given membrane, pressure and oil-membrane contact angle, a critical interfacial tension (IFT) below which oil permeation should occur. We observe such a transition from high to low oil retention with decreasing IFT for the anionic (SDS), cationic (CTAB) and non-ionic (TX) surfactant, but at significantly higher critical IFTs than predicted by YL. On the other side, for the zwitterionic DDAPS we do not observe a drop in oil retention, even at the lowest IFT. The discrepancy between our findings and the critical IFT predicted by YL can be explained by the difference between the measured contact angle and the effective contact angle at the wall of the membrane pores. This leads to a surfactant-dependent critical IFT. Additionally, our results point out that zwitterionic surfactants even at the lowest IFT did not present a critical IFT and exhibited low fouling and low oil permeation.
Loading next page...
 
/lp/pubmed/surfactant-dependent-critical-interfacial-tension-in-silicon-carbide-nOP2LsdwZS
DOI
10.1016/j.jcis.2020.03.032
pmid
32200166

Abstract

During fossil oil extraction, a complex water stream known as produced water (PW), is co-extracted. Membrane treatment makes PW re-use possible, but fouling and oil permeation remain major challenges. In this work, membrane fouling and oil retention of Synthetic PW stabilized with a cationic, anionic, zwitterionic or nonionic surfactant, were studied at various surfactant and salt concentrations. We discuss our results in the framework of the Young-Laplace (YL) equation, which predicts for a given membrane, pressure and oil-membrane contact angle, a critical interfacial tension (IFT) below which oil permeation should occur. We observe such a transition from high to low oil retention with decreasing IFT for the anionic (SDS), cationic (CTAB) and non-ionic (TX) surfactant, but at significantly higher critical IFTs than predicted by YL. On the other side, for the zwitterionic DDAPS we do not observe a drop in oil retention, even at the lowest IFT. The discrepancy between our findings and the critical IFT predicted by YL can be explained by the difference between the measured contact angle and the effective contact angle at the wall of the membrane pores. This leads to a surfactant-dependent critical IFT. Additionally, our results point out that zwitterionic surfactants even at the lowest IFT did not present a critical IFT and exhibited low fouling and low oil permeation.

Journal

Journal of colloid and interface sciencePubmed

Published: Apr 28, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off