Regulation of docetaxel chemosensitivity by NR2F6 in breast cancer.

Regulation of docetaxel chemosensitivity by NR2F6 in breast cancer. Docetaxel (DTX)-based chemotherapy significantly eliminates rest cancerous cells and decreases the risk of death, thus remaining the mainstay of treatment for operable breast cancer (BCa). However, resistance or incomplete response to DTX occurs frequently, resulting in disease recurrence and poor prognosis. There is an urgent need to identify and understand the key factors and corresponding molecular bases driving this complicated pathogenesis. Herein, both data mining and profiling analysis using clinical BCa biopsies showed that expression levels of the nuclear receptor subfamily 2, group F, member 6 (NR2F6), a recently characterized central transcription factor for cancer immune surveillance, were significantly downregulated in DTX-resistant BCa. This downregulation, possibly regulated by leptin signaling, predicted a poor postoperative chemotherapy survival in DTX-resistant BCa. In both genetically engineered cell models and patient-derived xenograft models, we provided evidence that BCa cells with insufficient NR2F6 expression were less responsive to DTX treatment. Mechanistically, NR2F6 functioned as a potent corepressor of platelet-derived growth factor B receptor gene (PDGFRB) transcription by recruiting HDAC2 onto the PDGFRB promoter. Stable PDGFRB inhibition ameliorated NR2F6 deficiency-impaired response to DTX in BCa cells, indicating that NR2F6's effect on DTX response is mediated, at least in part, through transcriptional repression of PDGFRB. Collectively, our findings define NR2F6 as an negative regulator of cell survival and DTX resistance, probably by serving as a convergent point linking leptin signaling and PDGF-B/PDGFRβ axis, in BCa cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Endocrine-related cancer Pubmed

Regulation of docetaxel chemosensitivity by NR2F6 in breast cancer.

Preview Only

Regulation of docetaxel chemosensitivity by NR2F6 in breast cancer.

Endocrine-related cancer: 1 – Mar 23, 2020

Abstract

Docetaxel (DTX)-based chemotherapy significantly eliminates rest cancerous cells and decreases the risk of death, thus remaining the mainstay of treatment for operable breast cancer (BCa). However, resistance or incomplete response to DTX occurs frequently, resulting in disease recurrence and poor prognosis. There is an urgent need to identify and understand the key factors and corresponding molecular bases driving this complicated pathogenesis. Herein, both data mining and profiling analysis using clinical BCa biopsies showed that expression levels of the nuclear receptor subfamily 2, group F, member 6 (NR2F6), a recently characterized central transcription factor for cancer immune surveillance, were significantly downregulated in DTX-resistant BCa. This downregulation, possibly regulated by leptin signaling, predicted a poor postoperative chemotherapy survival in DTX-resistant BCa. In both genetically engineered cell models and patient-derived xenograft models, we provided evidence that BCa cells with insufficient NR2F6 expression were less responsive to DTX treatment. Mechanistically, NR2F6 functioned as a potent corepressor of platelet-derived growth factor B receptor gene (PDGFRB) transcription by recruiting HDAC2 onto the PDGFRB promoter. Stable PDGFRB inhibition ameliorated NR2F6 deficiency-impaired response to DTX in BCa cells, indicating that NR2F6's effect on DTX response is mediated, at least in part, through transcriptional repression of PDGFRB. Collectively, our findings define NR2F6 as an negative regulator of cell survival and DTX resistance, probably by serving as a convergent point linking leptin signaling and PDGF-B/PDGFRβ axis, in BCa cells.
Loading next page...
 
/lp/pubmed/regulation-of-docetaxel-chemosensitivity-by-nr2f6-in-breast-cancer-sxD2MFAoro
DOI
10.1530/ERC-19-0229
pmid
32203934

Abstract

Docetaxel (DTX)-based chemotherapy significantly eliminates rest cancerous cells and decreases the risk of death, thus remaining the mainstay of treatment for operable breast cancer (BCa). However, resistance or incomplete response to DTX occurs frequently, resulting in disease recurrence and poor prognosis. There is an urgent need to identify and understand the key factors and corresponding molecular bases driving this complicated pathogenesis. Herein, both data mining and profiling analysis using clinical BCa biopsies showed that expression levels of the nuclear receptor subfamily 2, group F, member 6 (NR2F6), a recently characterized central transcription factor for cancer immune surveillance, were significantly downregulated in DTX-resistant BCa. This downregulation, possibly regulated by leptin signaling, predicted a poor postoperative chemotherapy survival in DTX-resistant BCa. In both genetically engineered cell models and patient-derived xenograft models, we provided evidence that BCa cells with insufficient NR2F6 expression were less responsive to DTX treatment. Mechanistically, NR2F6 functioned as a potent corepressor of platelet-derived growth factor B receptor gene (PDGFRB) transcription by recruiting HDAC2 onto the PDGFRB promoter. Stable PDGFRB inhibition ameliorated NR2F6 deficiency-impaired response to DTX in BCa cells, indicating that NR2F6's effect on DTX response is mediated, at least in part, through transcriptional repression of PDGFRB. Collectively, our findings define NR2F6 as an negative regulator of cell survival and DTX resistance, probably by serving as a convergent point linking leptin signaling and PDGF-B/PDGFRβ axis, in BCa cells.

Journal

Endocrine-related cancerPubmed

Published: Mar 23, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off