Protein Binding Affinity of Polymeric Nanoparticles as a Direct Indicator of Their Pharmacokinetics.

Protein Binding Affinity of Polymeric Nanoparticles as a Direct Indicator of Their Pharmacokinetics. Polymeric nanoparticles (NPs) are an important category of drug delivery systems, and their in vivo fate is closely associated with delivery efficacy. Analysis of the protein corona on the surface of NPs to understand the in vivo fate of different NPs has been shown to be reliable but complicated and time-consuming. In this work, we establish a simple approach for predicting the in vivo fate of polymeric NPs. We prepared a series of poly(ethylene glycol)-block-poly(d,l-lactide) (PEG-b-PLA) NPs with different protein binding behaviors by adjusting their PEG densities, which were determined by analyzing the serum protein adsorption. We further determined the protein binding affinity, denoted as the equilibrium association constant (KA), to correlate with in vivo fate of NPs. The in vivo fate, including blood clearance and Kupffer cell uptake, was studied, and the maximum concentration (Cmax), the area under the plasma concentration-time curve (AUC), and the mean residence time (MRT) were negatively linearly dependent, while Kupffer cell uptake was positively linearly dependent on KA. Subsequently, we verified the reliability of the approach for in vivo fate prediction using poly(methoxyethyl ethylene phosphate)-block-poly(d,l-lactide) (PEEP-b-PLA) and poly(vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PLA) NPs, and the linear relationship between the KA value and their PK parameters further suggests that the protein binding affinity of polymeric NPs can be a direct indicator of their pharmacokinetics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACS nano Pubmed

Protein Binding Affinity of Polymeric Nanoparticles as a Direct Indicator of Their Pharmacokinetics.

Preview Only

Protein Binding Affinity of Polymeric Nanoparticles as a Direct Indicator of Their Pharmacokinetics.

ACS nano, Volume 14 (3): 13 – Mar 25, 2020

Abstract

Polymeric nanoparticles (NPs) are an important category of drug delivery systems, and their in vivo fate is closely associated with delivery efficacy. Analysis of the protein corona on the surface of NPs to understand the in vivo fate of different NPs has been shown to be reliable but complicated and time-consuming. In this work, we establish a simple approach for predicting the in vivo fate of polymeric NPs. We prepared a series of poly(ethylene glycol)-block-poly(d,l-lactide) (PEG-b-PLA) NPs with different protein binding behaviors by adjusting their PEG densities, which were determined by analyzing the serum protein adsorption. We further determined the protein binding affinity, denoted as the equilibrium association constant (KA), to correlate with in vivo fate of NPs. The in vivo fate, including blood clearance and Kupffer cell uptake, was studied, and the maximum concentration (Cmax), the area under the plasma concentration-time curve (AUC), and the mean residence time (MRT) were negatively linearly dependent, while Kupffer cell uptake was positively linearly dependent on KA. Subsequently, we verified the reliability of the approach for in vivo fate prediction using poly(methoxyethyl ethylene phosphate)-block-poly(d,l-lactide) (PEEP-b-PLA) and poly(vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PLA) NPs, and the linear relationship between the KA value and their PK parameters further suggests that the protein binding affinity of polymeric NPs can be a direct indicator of their pharmacokinetics.
Loading next page...
 
/lp/pubmed/protein-binding-affinity-of-polymeric-nanoparticles-as-a-direct-mWW5teA0Tn
DOI
10.1021/acsnano.9b10015
pmid
32053346

Abstract

Polymeric nanoparticles (NPs) are an important category of drug delivery systems, and their in vivo fate is closely associated with delivery efficacy. Analysis of the protein corona on the surface of NPs to understand the in vivo fate of different NPs has been shown to be reliable but complicated and time-consuming. In this work, we establish a simple approach for predicting the in vivo fate of polymeric NPs. We prepared a series of poly(ethylene glycol)-block-poly(d,l-lactide) (PEG-b-PLA) NPs with different protein binding behaviors by adjusting their PEG densities, which were determined by analyzing the serum protein adsorption. We further determined the protein binding affinity, denoted as the equilibrium association constant (KA), to correlate with in vivo fate of NPs. The in vivo fate, including blood clearance and Kupffer cell uptake, was studied, and the maximum concentration (Cmax), the area under the plasma concentration-time curve (AUC), and the mean residence time (MRT) were negatively linearly dependent, while Kupffer cell uptake was positively linearly dependent on KA. Subsequently, we verified the reliability of the approach for in vivo fate prediction using poly(methoxyethyl ethylene phosphate)-block-poly(d,l-lactide) (PEEP-b-PLA) and poly(vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PLA) NPs, and the linear relationship between the KA value and their PK parameters further suggests that the protein binding affinity of polymeric NPs can be a direct indicator of their pharmacokinetics.

Journal

ACS nanoPubmed

Published: Mar 25, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off