Nano-selenium functionalized zinc oxide nanorods: A superadsorbent for mercury (II) removal from waters.

Nano-selenium functionalized zinc oxide nanorods: A superadsorbent for mercury (II) removal from... In this study, nano selenium functionalized zinc oxide nanorods, NanoSe@ZnO-NR, was prepared, characterized and investigated for Hg(II) removal from waters of different types. The study results revealed that the material showed a superior adsorption capacity (qm, 1110 mg g-1) and excellent distribution coefficient (Kd, 9.11 × 108 mL g-1) which is two or more orders above most of the adsorbents reported in the literature. It should be also known that, 30 mg of the adsorbent can quickly reduce 10 mg L-1 Hg(II) to undetectable level from 10 mL of sample solution. The adsorption data were well explained with the pseudo-second order kinetic model and Langmuir adsorption isotherm model. Besides, the capturing capability of the material is independent on the pH change (2-12), selective against interfering cations, and exhibited fast kinetics (equilibrium time, ∼1 min). The NanoSe@ZnO-NR performance was also tested on real samples from different origin, surface waters (tap, lake and river) and wastewaters (effluent and influent), and complete removal and ≥99.2% removal efficiency was observed at 0.01 and 10 mg L-1 spiking levels, respectively. Therefore, NanoSe@ZnO-NR can be considered as a potential adsorbent in advancing the wastewater treatment technology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of hazardous materials Pubmed

Nano-selenium functionalized zinc oxide nanorods: A superadsorbent for mercury (II) removal from waters.

Journal of hazardous materials, Volume 392: 1 – Apr 17, 2020
Preview Only

Nano-selenium functionalized zinc oxide nanorods: A superadsorbent for mercury (II) removal from waters.

Journal of hazardous materials, Volume 392: 1 – Apr 17, 2020

Abstract

In this study, nano selenium functionalized zinc oxide nanorods, NanoSe@ZnO-NR, was prepared, characterized and investigated for Hg(II) removal from waters of different types. The study results revealed that the material showed a superior adsorption capacity (qm, 1110 mg g-1) and excellent distribution coefficient (Kd, 9.11 × 108 mL g-1) which is two or more orders above most of the adsorbents reported in the literature. It should be also known that, 30 mg of the adsorbent can quickly reduce 10 mg L-1 Hg(II) to undetectable level from 10 mL of sample solution. The adsorption data were well explained with the pseudo-second order kinetic model and Langmuir adsorption isotherm model. Besides, the capturing capability of the material is independent on the pH change (2-12), selective against interfering cations, and exhibited fast kinetics (equilibrium time, ∼1 min). The NanoSe@ZnO-NR performance was also tested on real samples from different origin, surface waters (tap, lake and river) and wastewaters (effluent and influent), and complete removal and ≥99.2% removal efficiency was observed at 0.01 and 10 mg L-1 spiking levels, respectively. Therefore, NanoSe@ZnO-NR can be considered as a potential adsorbent in advancing the wastewater treatment technology.
Loading next page...
 
/lp/pubmed/nano-selenium-functionalized-zinc-oxide-nanorods-a-superadsorbent-for-njlpj0KTqB
DOI
10.1016/j.jhazmat.2020.122495
pmid
32208313

Abstract

In this study, nano selenium functionalized zinc oxide nanorods, NanoSe@ZnO-NR, was prepared, characterized and investigated for Hg(II) removal from waters of different types. The study results revealed that the material showed a superior adsorption capacity (qm, 1110 mg g-1) and excellent distribution coefficient (Kd, 9.11 × 108 mL g-1) which is two or more orders above most of the adsorbents reported in the literature. It should be also known that, 30 mg of the adsorbent can quickly reduce 10 mg L-1 Hg(II) to undetectable level from 10 mL of sample solution. The adsorption data were well explained with the pseudo-second order kinetic model and Langmuir adsorption isotherm model. Besides, the capturing capability of the material is independent on the pH change (2-12), selective against interfering cations, and exhibited fast kinetics (equilibrium time, ∼1 min). The NanoSe@ZnO-NR performance was also tested on real samples from different origin, surface waters (tap, lake and river) and wastewaters (effluent and influent), and complete removal and ≥99.2% removal efficiency was observed at 0.01 and 10 mg L-1 spiking levels, respectively. Therefore, NanoSe@ZnO-NR can be considered as a potential adsorbent in advancing the wastewater treatment technology.

Journal

Journal of hazardous materialsPubmed

Published: Apr 17, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off