Lipidomics-based assays coupled with computational approaches can identify novel phospholipase A2 inhibitors.

Lipidomics-based assays coupled with computational approaches can identify novel phospholipase A2... Phospholipase A2 (PLA2) enzymes play a major role in many diseases including the inflammatory cascade and specific potent small molecule inhibitors could be useful in studying their physiological role as well as for the development of drugs. In order to discover novel small molecule inhibitor platforms for members of the PLA2 superfamily of enzymes, we have applied computational approaches to determine the binding mode of potent inhibitors specific for particular PLA2s to the screening of chemical libraries. This has including the U.S. National Institutes of Health (NIH) National Cancer Institute (NCI) Diversity Set V and the ChemBridge commercial compound libraries. We have then subjected identified inhibitor structures to recently developed lipidomics based screening assays to determine the XI(50) and specificity of the identified compounds for specific PLA2s. Herein we review this approach and report the identity of initial hits for both the Group IVA cytosolic PLA2 and the Group VIA calcium-independent PLA2 that are worthy of further structural modification to develop novel platforms for inhibitor development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in biological regulation Pubmed

Lipidomics-based assays coupled with computational approaches can identify novel phospholipase A2 inhibitors.

Advances in biological regulation, Volume 76: 1 – May 26, 2020
Preview Only

Lipidomics-based assays coupled with computational approaches can identify novel phospholipase A2 inhibitors.

Advances in biological regulation, Volume 76: 1 – May 26, 2020

Abstract

Phospholipase A2 (PLA2) enzymes play a major role in many diseases including the inflammatory cascade and specific potent small molecule inhibitors could be useful in studying their physiological role as well as for the development of drugs. In order to discover novel small molecule inhibitor platforms for members of the PLA2 superfamily of enzymes, we have applied computational approaches to determine the binding mode of potent inhibitors specific for particular PLA2s to the screening of chemical libraries. This has including the U.S. National Institutes of Health (NIH) National Cancer Institute (NCI) Diversity Set V and the ChemBridge commercial compound libraries. We have then subjected identified inhibitor structures to recently developed lipidomics based screening assays to determine the XI(50) and specificity of the identified compounds for specific PLA2s. Herein we review this approach and report the identity of initial hits for both the Group IVA cytosolic PLA2 and the Group VIA calcium-independent PLA2 that are worthy of further structural modification to develop novel platforms for inhibitor development.
Loading next page...
 
/lp/pubmed/lipidomics-based-assays-coupled-with-computational-approaches-can-LTAB6Hr0Gp
DOI
10.1016/j.jbior.2020.100719
pmid
32199750

Abstract

Phospholipase A2 (PLA2) enzymes play a major role in many diseases including the inflammatory cascade and specific potent small molecule inhibitors could be useful in studying their physiological role as well as for the development of drugs. In order to discover novel small molecule inhibitor platforms for members of the PLA2 superfamily of enzymes, we have applied computational approaches to determine the binding mode of potent inhibitors specific for particular PLA2s to the screening of chemical libraries. This has including the U.S. National Institutes of Health (NIH) National Cancer Institute (NCI) Diversity Set V and the ChemBridge commercial compound libraries. We have then subjected identified inhibitor structures to recently developed lipidomics based screening assays to determine the XI(50) and specificity of the identified compounds for specific PLA2s. Herein we review this approach and report the identity of initial hits for both the Group IVA cytosolic PLA2 and the Group VIA calcium-independent PLA2 that are worthy of further structural modification to develop novel platforms for inhibitor development.

Journal

Advances in biological regulationPubmed

Published: May 26, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off