Hotspots API: A Python Package for the Detection of Small Molecule Binding Hotspots and Application to Structure-Based Drug Design.

Hotspots API: A Python Package for the Detection of Small Molecule Binding Hotspots and... Methods that survey protein surfaces for binding hotspots can help to evaluate target tractability and guide exploration of potential ligand binding regions. Fragment Hotspot Maps builds upon interaction data mined from the CSD (Cambridge Structural Database) and exploits the idea of identifying hotspots using small chemical fragments, which is now widely used to design new drug leads. Prior to this publication, Fragment Hotspot Maps was only publicly available through a web application. To increase the accessibility of this algorithm we present the Hotspots API (application programming interface), a toolkit that offers programmatic access to the core Fragment Hotspot Maps algorithm, thereby facilitating the interpretation and application of the analysis. To demonstrate the package's utility, we present a workflow which automatically derives protein hydrogen-bond constraints for molecular docking with GOLD. The Hotspots API is available from https://github.com/prcurran/hotspots under the MIT license and is dependent upon the commercial CSD Python API. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of chemical information and modeling Pubmed

Hotspots API: A Python Package for the Detection of Small Molecule Binding Hotspots and Application to Structure-Based Drug Design.

Preview Only

Hotspots API: A Python Package for the Detection of Small Molecule Binding Hotspots and Application to Structure-Based Drug Design.

Journal of chemical information and modeling, Volume 60 (4): 6 – Apr 27, 2020

Abstract

Methods that survey protein surfaces for binding hotspots can help to evaluate target tractability and guide exploration of potential ligand binding regions. Fragment Hotspot Maps builds upon interaction data mined from the CSD (Cambridge Structural Database) and exploits the idea of identifying hotspots using small chemical fragments, which is now widely used to design new drug leads. Prior to this publication, Fragment Hotspot Maps was only publicly available through a web application. To increase the accessibility of this algorithm we present the Hotspots API (application programming interface), a toolkit that offers programmatic access to the core Fragment Hotspot Maps algorithm, thereby facilitating the interpretation and application of the analysis. To demonstrate the package's utility, we present a workflow which automatically derives protein hydrogen-bond constraints for molecular docking with GOLD. The Hotspots API is available from https://github.com/prcurran/hotspots under the MIT license and is dependent upon the commercial CSD Python API.
Loading next page...
 
/lp/pubmed/hotspots-api-a-python-package-for-the-detection-of-small-molecule-vCdX0hw5as
DOI
10.1021/acs.jcim.9b00996
pmid
32207937

Abstract

Methods that survey protein surfaces for binding hotspots can help to evaluate target tractability and guide exploration of potential ligand binding regions. Fragment Hotspot Maps builds upon interaction data mined from the CSD (Cambridge Structural Database) and exploits the idea of identifying hotspots using small chemical fragments, which is now widely used to design new drug leads. Prior to this publication, Fragment Hotspot Maps was only publicly available through a web application. To increase the accessibility of this algorithm we present the Hotspots API (application programming interface), a toolkit that offers programmatic access to the core Fragment Hotspot Maps algorithm, thereby facilitating the interpretation and application of the analysis. To demonstrate the package's utility, we present a workflow which automatically derives protein hydrogen-bond constraints for molecular docking with GOLD. The Hotspots API is available from https://github.com/prcurran/hotspots under the MIT license and is dependent upon the commercial CSD Python API.

Journal

Journal of chemical information and modelingPubmed

Published: Apr 27, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off