Glass Transition Dynamics and Physical Stability of Amorphous Griseofulvin in Binary Mixtures with Low-Tg Excipients.

Glass Transition Dynamics and Physical Stability of Amorphous Griseofulvin in Binary Mixtures... Amorphization of drug formulations containing active pharmaceutical ingredients (APIs) and excipients has been proven to be an effective strategy to improve their poor aqueous solubility. The excipients can also impact the physical stability of the prepared amorphous forms. Generally, researchers are more apt to select excipients that have high values of glass transition temperature (Tg) because of the antiplasticization effect of the additives on APIs. In this article, we studied the glass transition dynamics as well as crystallization behavior in binary blends composed of griseofulvin (GSF) and two low-Tg additives, octaacetylmaltose (acMAL) and polyvinyl acetate (PVAc), with a particular focus on the plasticization effect. Effectively suppressed crystallization of GSF is observed in both systems when higher excipient contents are used. Our finding aims to encourage the use of specifically developed protocols in which suitable plasticizers are used as excipients for stabilizing the amorphous state of a drug. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular pharmaceutics Pubmed

Glass Transition Dynamics and Physical Stability of Amorphous Griseofulvin in Binary Mixtures with Low-Tg Excipients.

Molecular pharmaceutics, Volume 16 (8): 10 – Aug 5, 2019
Preview Only

Glass Transition Dynamics and Physical Stability of Amorphous Griseofulvin in Binary Mixtures with Low-Tg Excipients.

Molecular pharmaceutics, Volume 16 (8): 10 – Aug 5, 2019

Abstract

Amorphization of drug formulations containing active pharmaceutical ingredients (APIs) and excipients has been proven to be an effective strategy to improve their poor aqueous solubility. The excipients can also impact the physical stability of the prepared amorphous forms. Generally, researchers are more apt to select excipients that have high values of glass transition temperature (Tg) because of the antiplasticization effect of the additives on APIs. In this article, we studied the glass transition dynamics as well as crystallization behavior in binary blends composed of griseofulvin (GSF) and two low-Tg additives, octaacetylmaltose (acMAL) and polyvinyl acetate (PVAc), with a particular focus on the plasticization effect. Effectively suppressed crystallization of GSF is observed in both systems when higher excipient contents are used. Our finding aims to encourage the use of specifically developed protocols in which suitable plasticizers are used as excipients for stabilizing the amorphous state of a drug.
Loading next page...
 
/lp/pubmed/glass-transition-dynamics-and-physical-stability-of-amorphous-r84mynKrKs
DOI
10.1021/acs.molpharmaceut.9b00476

Abstract

Amorphization of drug formulations containing active pharmaceutical ingredients (APIs) and excipients has been proven to be an effective strategy to improve their poor aqueous solubility. The excipients can also impact the physical stability of the prepared amorphous forms. Generally, researchers are more apt to select excipients that have high values of glass transition temperature (Tg) because of the antiplasticization effect of the additives on APIs. In this article, we studied the glass transition dynamics as well as crystallization behavior in binary blends composed of griseofulvin (GSF) and two low-Tg additives, octaacetylmaltose (acMAL) and polyvinyl acetate (PVAc), with a particular focus on the plasticization effect. Effectively suppressed crystallization of GSF is observed in both systems when higher excipient contents are used. Our finding aims to encourage the use of specifically developed protocols in which suitable plasticizers are used as excipients for stabilizing the amorphous state of a drug.

Journal

Molecular pharmaceuticsPubmed

Published: Aug 5, 2019

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off