Fabrication of Collagen Films with Enhanced Mechanical and Enzymatic Stability through Thermal Treatment in Fluorous Media.

Fabrication of Collagen Films with Enhanced Mechanical and Enzymatic Stability through Thermal... Collagen I (Col-I) is widely used in the fabrication of biomaterials due to its biocompatibility; however, Col-I based biomaterials are susceptible to mechanical failure during handling, which limits their applicability to biomaterials. Chemical or physical treatment can improve the mechanical properties of collagen; however, these processes can create issues of cytotoxicity or denaturation. We report here an alternative strategy to improve the stability and mechanical properties of Col-I while preserving its native structure, through thermal treatment in fluorous media. Thermal treatment of Col-I in fluorous solvent generates compact, stable films with significantly increased mechanical strength. Furthermore, the use of fluorous media significantly reduces the extent of swelling and the rate of proteolytic degradation, but it preserves the high cell biocompatibility. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACS applied materials & interfaces Pubmed

Fabrication of Collagen Films with Enhanced Mechanical and Enzymatic Stability through Thermal Treatment in Fluorous Media.

ACS applied materials & interfaces, Volume 12 (5): 8 – Feb 6, 2020
Preview Only

Fabrication of Collagen Films with Enhanced Mechanical and Enzymatic Stability through Thermal Treatment in Fluorous Media.

ACS applied materials & interfaces, Volume 12 (5): 8 – Feb 6, 2020

Abstract

Collagen I (Col-I) is widely used in the fabrication of biomaterials due to its biocompatibility; however, Col-I based biomaterials are susceptible to mechanical failure during handling, which limits their applicability to biomaterials. Chemical or physical treatment can improve the mechanical properties of collagen; however, these processes can create issues of cytotoxicity or denaturation. We report here an alternative strategy to improve the stability and mechanical properties of Col-I while preserving its native structure, through thermal treatment in fluorous media. Thermal treatment of Col-I in fluorous solvent generates compact, stable films with significantly increased mechanical strength. Furthermore, the use of fluorous media significantly reduces the extent of swelling and the rate of proteolytic degradation, but it preserves the high cell biocompatibility.
Loading next page...
 
/lp/pubmed/fabrication-of-collagen-films-with-enhanced-mechanical-and-enzymatic-dr0wPrwm1m
DOI
10.1021/acsami.9b18256
pmid
31935058

Abstract

Collagen I (Col-I) is widely used in the fabrication of biomaterials due to its biocompatibility; however, Col-I based biomaterials are susceptible to mechanical failure during handling, which limits their applicability to biomaterials. Chemical or physical treatment can improve the mechanical properties of collagen; however, these processes can create issues of cytotoxicity or denaturation. We report here an alternative strategy to improve the stability and mechanical properties of Col-I while preserving its native structure, through thermal treatment in fluorous media. Thermal treatment of Col-I in fluorous solvent generates compact, stable films with significantly increased mechanical strength. Furthermore, the use of fluorous media significantly reduces the extent of swelling and the rate of proteolytic degradation, but it preserves the high cell biocompatibility.

Journal

ACS applied materials & interfacesPubmed

Published: Feb 6, 2020

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off