Extracellular matrix cues modulate Schwann cell morphology, proliferation, and protein expression.

Extracellular matrix cues modulate Schwann cell morphology, proliferation, and protein expression. Peripheral nerve injuries require a complex set of signals from cells, macrophages, and the extracellular matrix (ECM) to induce regeneration across injury sites and achieve functional recovery. Schwann cells (SCs), the major glial cell in the peripheral nervous system (PNS), are critical to nerve regeneration due to their inherent capacity for altering phenotype postinjury to facilitate wound healing. The ECM plays a vital role in wound healing as well as regulating cell phenotype during tissue repair. To examine the underlying mechanisms between the ECM and SCs, this work sought to determine how specific ECM cues regulate the phenotype of SCs. To address this, SCs were cultured on polydimethylsiloxane substrates of a variable Young's modulus coated with ECM proteins. Cells were analyzed for spreading area, proliferation, cell and nuclear shape, and c-Jun expression. It was found that substrates with a stiffness of 8.67 kPa coated with laminin promoted the highest expression of c-Jun, a marker signifying a "regenerative" SC. Microcontact printed, cell adhesive areas were then utilized to precisely control the geometry and spreading of SCs and by controlling spreading area and cellular elongation; expression of c-Jun was either promoted or downregulated. These results begin to address the significant interplay between ECM cues and phenotype of SCs, while offering a potential means to enhance PNS regeneration through cellular therapies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of tissue engineering and regenerative medicine Pubmed

Extracellular matrix cues modulate Schwann cell morphology, proliferation, and protein expression.

Journal of tissue engineering and regenerative medicine: 1 – Nov 15, 2019
Preview Only

Extracellular matrix cues modulate Schwann cell morphology, proliferation, and protein expression.

Journal of tissue engineering and regenerative medicine: 1 – Nov 15, 2019

Abstract

Peripheral nerve injuries require a complex set of signals from cells, macrophages, and the extracellular matrix (ECM) to induce regeneration across injury sites and achieve functional recovery. Schwann cells (SCs), the major glial cell in the peripheral nervous system (PNS), are critical to nerve regeneration due to their inherent capacity for altering phenotype postinjury to facilitate wound healing. The ECM plays a vital role in wound healing as well as regulating cell phenotype during tissue repair. To examine the underlying mechanisms between the ECM and SCs, this work sought to determine how specific ECM cues regulate the phenotype of SCs. To address this, SCs were cultured on polydimethylsiloxane substrates of a variable Young's modulus coated with ECM proteins. Cells were analyzed for spreading area, proliferation, cell and nuclear shape, and c-Jun expression. It was found that substrates with a stiffness of 8.67 kPa coated with laminin promoted the highest expression of c-Jun, a marker signifying a "regenerative" SC. Microcontact printed, cell adhesive areas were then utilized to precisely control the geometry and spreading of SCs and by controlling spreading area and cellular elongation; expression of c-Jun was either promoted or downregulated. These results begin to address the significant interplay between ECM cues and phenotype of SCs, while offering a potential means to enhance PNS regeneration through cellular therapies.
Loading next page...
 
/lp/pubmed/extracellular-matrix-cues-modulate-schwann-cell-morphology-SOb39tn5E0
DOI
10.1002/term.2987

Abstract

Peripheral nerve injuries require a complex set of signals from cells, macrophages, and the extracellular matrix (ECM) to induce regeneration across injury sites and achieve functional recovery. Schwann cells (SCs), the major glial cell in the peripheral nervous system (PNS), are critical to nerve regeneration due to their inherent capacity for altering phenotype postinjury to facilitate wound healing. The ECM plays a vital role in wound healing as well as regulating cell phenotype during tissue repair. To examine the underlying mechanisms between the ECM and SCs, this work sought to determine how specific ECM cues regulate the phenotype of SCs. To address this, SCs were cultured on polydimethylsiloxane substrates of a variable Young's modulus coated with ECM proteins. Cells were analyzed for spreading area, proliferation, cell and nuclear shape, and c-Jun expression. It was found that substrates with a stiffness of 8.67 kPa coated with laminin promoted the highest expression of c-Jun, a marker signifying a "regenerative" SC. Microcontact printed, cell adhesive areas were then utilized to precisely control the geometry and spreading of SCs and by controlling spreading area and cellular elongation; expression of c-Jun was either promoted or downregulated. These results begin to address the significant interplay between ECM cues and phenotype of SCs, while offering a potential means to enhance PNS regeneration through cellular therapies.

Journal

Journal of tissue engineering and regenerative medicinePubmed

Published: Nov 15, 2019

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off