Excitonic Wave Function Reconstruction from Near-Field Spectra Using Machine Learning Techniques.

Excitonic Wave Function Reconstruction from Near-Field Spectra Using Machine Learning Techniques. A general problem in quantum mechanics is the reconstruction of eigenstate wave functions from measured data. In the case of molecular aggregates, information about excitonic eigenstates is vitally important to understand their optical and transport properties. Here we show that from spatially resolved near field spectra it is possible to reconstruct the underlying delocalized aggregate eigenfunctions. Although this high-dimensional nonlinear problem defies standard numerical or analytical approaches, we have found that it can be solved using a convolutional neural network. For both one-dimensional and two-dimensional aggregates we find that the reconstruction is robust to various types of disorder and noise. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical review letters Pubmed

Excitonic Wave Function Reconstruction from Near-Field Spectra Using Machine Learning Techniques.

Physical review letters, Volume 123 (16): 1 – Nov 12, 2019
Preview Only

Excitonic Wave Function Reconstruction from Near-Field Spectra Using Machine Learning Techniques.

Physical review letters, Volume 123 (16): 1 – Nov 12, 2019

Abstract

A general problem in quantum mechanics is the reconstruction of eigenstate wave functions from measured data. In the case of molecular aggregates, information about excitonic eigenstates is vitally important to understand their optical and transport properties. Here we show that from spatially resolved near field spectra it is possible to reconstruct the underlying delocalized aggregate eigenfunctions. Although this high-dimensional nonlinear problem defies standard numerical or analytical approaches, we have found that it can be solved using a convolutional neural network. For both one-dimensional and two-dimensional aggregates we find that the reconstruction is robust to various types of disorder and noise.
Loading next page...
 
/lp/pubmed/excitonic-wave-function-reconstruction-from-near-field-spectra-using-UAQcN4XIYW
DOI
10.1103/PhysRevLett.123.163202

Abstract

A general problem in quantum mechanics is the reconstruction of eigenstate wave functions from measured data. In the case of molecular aggregates, information about excitonic eigenstates is vitally important to understand their optical and transport properties. Here we show that from spatially resolved near field spectra it is possible to reconstruct the underlying delocalized aggregate eigenfunctions. Although this high-dimensional nonlinear problem defies standard numerical or analytical approaches, we have found that it can be solved using a convolutional neural network. For both one-dimensional and two-dimensional aggregates we find that the reconstruction is robust to various types of disorder and noise.

Journal

Physical review lettersPubmed

Published: Nov 12, 2019

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off